Abdalla, E., Byrem, T., Weigel, K., & Rosa, G. (2016). Genome‐wide association mapping and pathway analysis of leukosis incidence in a US holstein cattle population. Animal Genetics, 47(4), 395-407. doi: 10.1111/age.12438
Abdoli, R., Mirhoseini, S. Z., Hossein-Zadeh, N. G., Zamani, P., Ferdosi, M. H., & Gondro, C. (2019a). Genome-wide association study of four composite reproductive traits in Iranian fat-tailed sheep. Reproduction, Fertility and Development, 31(6), 1127-1133. doi: 10.1071/RD18282
Abdoli, R., Mirhoseini, S. Z., Ghavi Hossein-Zadeh, N., Zamani, P., Moradi, M. H., Ferdosi, M. H., & Gondro, C. (2019b). Genome-wide association study of first lambing age and lambing interval in sheep. Small Ruminant Research, 178, 43-45. doi: 10.1016/J.SMALLRUMRES.2019.07.014
An, B., Xu, L., Xia, J., Wang, X., Miao, J., Chang, T., Song, M., Ni, J., Xu, L., Zhang, L., Li, J., & Gao, H. (2020). Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle. BMC Genetics, 21(1), 32. doi: 10.1186/s12863-020-0837-6
Arora, R., Kaur, M., Kumar, A., Chhabra, P., Mir, M. A., Ahlawat, S., Singh, M. K., Sharma, R., & Gera, R. (2024). Skeletal muscle transcriptomics of sheep acclimated to cold desert and tropical regions identifies genes and pathways accentuating their diversity. International Journal of Biometeorology, 68(9), 1811-1821. doi: 10.1007/s00484-024-02708-3
Arzik, Y., Kizilaslan, M., Behrem, S., White, S. N., Piel, L. M., & Cinar, M. U. (2023). Genome-wide scan of wool production traits in akkaraman sheep. Genes, 14(3), 713. doi: 10.3390/genes14030713
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25, 25-29. doi: 10.1038/75556
Chen, Z. H., Xu, Y. X., Xie, X. L., Wang, D. F., Aguilar-Gómez, D., Liu, G. J., Li, X., Esmailizadeh, A., Rezaei, V., Kantanen, J., Ammosov, I., Nosrati, M., Periasamy, K., Coltman, D. W., Lenstra, J. A., Nielsen, R., & Li, M. H. (2021). Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biology, 4(1), 1307. doi: 10.1038/s42003-021-02817-4
Clancey, E., Kiser, J. N., & Moraes, J. G. N. (2019). Genome-wide association analysis and gene set enrichment analysis with SNP data identify genes associated with 305-day milk yield in Holstein dairy cows. Animal Genetics, 50, 254-258. doi: 10.1111/age.12792
Connell, P., Ballinger, C. A., Jiang, J., Wu, Y., Thompson, L. J., Hohfeld, J., & Patterson, C. (2001). The cochaperone CHIP regulates protein triagedecisions mediated by heat -shock proteins. Nature Cell Biology, 3, 93 -96. doi: 10.1038/35050618
Dadousis, C., Pegolo, S., Rosa, G., Gianola, D., Bittante, G., & Cecchinato, A. (2017). Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. Journal of Dairy Science, 100(2), 1223-1231. doi: 10.3168/jds.2016-11587
Dadousis, C., Pegolo, S., Rosa, G. J. M., Gianola, D., Bittante, G., & Cecchinato, A. (2017). Pathway-based genomewide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. Journal of Dairy Science, 100, 1223-1231. doi: 10.3168/jds.2016-11587
Devlin, B., & Roeder, K. (1999). Genomic control for association studies. Biometrics, 55, 997-1004. doi: 10.1111/j.0006-341x
Duan, X., An, B., Du, L., Chang, T., Liang, M., Yang, B. G., Xu, L., Zhang, L., Li, J. E. G., & Gao, H. (2021). Genome-wide association analysis of growth curve parameters in chinese simmental beef cattle. Animals, 11(1), 192. doi: 10.3390/ani11010192
Edea, Z., Dadi, H., Dessie, T., & Kim, K. S. (2019). Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes & Genomics, 41, 973-981. doi: 10.1007/s13258-019-00820-y
Esmaeilifard, S. M., Gholizadeh, M., Hafezian, S. H., & Abdollahi-Arpanahi, R. (2021). Genes and pathways affecting sheep productivity traits: genetic parameters, genome-wide association mapping, and pathway enrichment analysis. Frontiers in Genetics, 12, 710613. doi: 10.3389/fgene.2021.710613
Esmaeilifard, S. M., Hafezian, S. H., Gholizadeh, M., & Abdolahi-Arpanahi, R. (2019). Gene set enrichment analysis using genome-wide association study to identify genes and biological pathways associated with twinning in Baluchi sheep.
Animal Production Research,
8(2), 63-80. doi:
10.22124/AR.2019.11948.1365 [In Persian]
Freitas, P. H., Wang, Y., Yan, P., Oliveira, H. R., Schenkel, F. S., Zhang, Y., Xu, Q., & Brito, L. F. (2021). Genetic diversity and signatures of selection for thermal stress in cattle and other two Bos species adapted to divergent climatic conditions. Frontiers in Genetics, 12, 604823. doi: 10.3389/fgene.2021.604823
Gaspar, D., Ginja, C., Carolino, N., Leão, C., Monteiro, H., Tábuas, L., Branco, S., Padre, L., Caetano, P., Romão, R., & Matos, C. (2024). Genome-wide association study identifies genetic variants underlying footrot in Portuguese Merino sheep. BMC Genomics, 25(1), 100.
Ghavi Hossein-Zadeh, N. (2024). An overview of recent technological developments in bovine genomics. Veterinary and Animal Science, 25, 100382. doi: 10.1016/J.VAS.2024.100382
Gholizadeh, M., Rahimi-Mianji, G., Nejati-Javaremi, A., De Koning, D. J., & Jonas, E. (2014). Genome wide association study to detect QTL for twinning rate in Baluchi sheep. Journal of Genetics, 93, 489-493. doi: 10.1186/s12864-024-10130-7
Gootwine, E. (2020). Invited review: Opportunities for genetic improvement toward higher prolificacy in sheep.
Small Ruminant Research,
186, 106090. doi:
10.1016/j.smallrumres.2020.106090
Guo, T., Zhao, H., Yuan, C., Huang, S., Zhou, S., Lu, Z., Niu, C. E., Liu, J., Zhu, S., Yue, Y., & Yang, Y. (2021). Selective sweeps uncovering the genetic basis of horn and adaptability traits on fine-wool sheep in China. Frontiers in Genetics, 12, 604235. doi: 10.3389/fgene.2021.604235
Habimana, R., Ngeno, K., Okeno, T. O., Hirwa, C. A., Keambou Tiambo, C., & Yao, N. K. (2021). Genome-wide association study of growth performance and immune response to newcastle disease virus of indigenous chicken in Rwanda. Frontiers in Genetics, 12, 723980. doi: 10.3389/fgene.2021.723980
Han, Y., & Peñagaricano, F. (2016). Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genetics, 17(1), 143. doi: 10.1186/s12863-016-0454-6
Huang, D.W., Sherman, B.T., & Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protocols, 4(1), 44-57. doi: 10.1038/nprot.2008.211
Igoshin, A., Yudin, N., Aitnazarov, R., Yurchenko, A. A., & Larkin, D. M. (2021). Whole-genome resequencing points to candidate DNA loci affecting body temperature under cold stress in Siberian cattle populations. Life, 11(9), 959. doi: 10.3390/life11090959
Jafarymanesh, A. R., Khaltabadi Farahani, A. H., Moradi, M. H., & Mohammadi, H. (2020). Gene-set enrichment analysis to identify genes and biological pathways associated with egg weight in the whole laying period.
Journal of Agricultural Biotechnology,
12(3), 91-116. doi:
10.22103/JAB.2020.15255.1197 [In Persian]
Jombart, T., & Ahmed, I. (2011). New tools for the analysis of genome-wide SNP data. Bioinformatics, 27, 3070-3071. doi: 10.1093/bioinformatics/btr521
Jin, M., Lu, J., Fei, X., Lu, Z., Quan, K., Liu, Y., Chu, M., Di, R., Wei, C., & Wang, H. (2020). Selection signatures analysis reveals genes associated with high-altitude adaptation in Tibetan goats from Nagqu, Tibet. Animals, 10(9), 1599. doi: 10.3390/ani10091599
Jin, M., Wang, H., Liu, G., Lu, J., Yuan, Z., Li, T., Liu, E., Lu, Z., Du, L., & Wei, C. (2024). Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation. Genetics Selection Evolution, 56(1), 26. doi: 10.1186/s12711-024-00880-z
Karimi, K., Farid, A. H., Myles, S., & Miar, Y. (2021). Detection of selection signatures for response to Aleutian mink disease virus infection in American mink. Scientific Reports, 11(1), 2944. doi: 10.1038/s41598-021-82522-8
Kaseja, K., Mucha, S., Yates, J., Smith, E., Banos, G., & Conington, J. (2023). Genome-wide association study of health and production traits in meat sheep. Animal, 17(10), 100968. doi: 10.1016/j.animal.2023.100968
Khalatabadi-Farahani, A. H., Mohammadi, H., & Moradi, M. H. (2020). Gene set enrichment analysis using genome-wide association study to identify genes and pathways associated with litter size in various sheep breeds.
Journal of animal production, 22(3), 325-335. doi:
10.22059/jap.2020.292715.623468 [In Persian]
Khanzadeh, H., Ghavi Hossein-Zadeh, N., & Ghovvati, S. (2022). The statistical power of genome-wide association studies for threshold traits with different frequencies of causal variants. Genetica, 150(1), 51-57. doi: 10.1007/s10709-021-00140-8
Khare, S., Lawhon, S. D., Drake, K. L., Nunes, J. E. S., Figueiredo, J. F., Rossetti, C. A., Gull, T., Everts, R. E., Lewin, H. A., & Galindo, C. L. (2012). Systems biology analysis of gene expression during in vivo Mycobacterium avium paratuberculosis enteric colonization reveals role for immune tolerance. PLoS One, 8, e42127. doi: 10.1371/journal.pone.0042127
Kijas, J. W., Lenstra, B., Hayes, S., Boitard, L. R., & Porto, N. (2012). Genome wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 10, 1001258. doi: 10.1371/journal.pbio.1001258
Li, H., Wu, X. L., Tait, J. R. G., Bauck, S., Thomas, D. L., Murphy, T. W., & Rosa, G. J. M. (2020). Genome‐wide association study of milk production traits in a crossbred dairy sheep population using three statistical models. Animal Genetics, 51(4), 624-628. doi: 10.1111/age.12956
Li, X., Yuan, L., Wang, W., Zhang, D., Zhao, Y., Chen, J., Xu, D., Zhao, L., Li, F., & Zhang, X. (2022). Whole genome re-sequencing reveals artificial and natural selection for milk traits in East Friesian sheep. Frontiers in Veterinary Science, 9, 1034211. doi: 10.3389/fvets.2022.1034211
Liang, C. S., Kobiyama, A., Shimizu, A., Sasaki, T., Asakawa, S., Shimizu, N., & Watabe, S. (2007). Fast skeletal muscle myosin heavy chain gene cluster of medaka Oryzias latipes enrolled in temperature adaptation. Physiological Genomics, 29(2), 201-214. doi: 10.1152/physiolgenomics.00078.2006
Mastrangelo, S., Bahbahani, H., Moioli, B., Ahbara, A., Abri, M. A., & Almathen, F. (2019). Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PloS ONE, 14, 0209632. doi: 10.1371/journal.pone.0209632
McLaren, R. J., Rogers, G. R., Davies, K. P., Maddox, J. F., & Montgomery, G. W. (1997). Linkage mapping of wool keratin and keratin-associated protein genes in sheep. Mammalian Genome, 8(12), 938–940. doi: 10.1007/s003359900616
Mohammadi, H., Khaltabadi Farahani, A. H, & Moradi, M. H. (2023). Genome-wide association study based on gene-set enrichment analysis of economically important traits in Japanese quail. Animal Production Research, 12(1), 65-78. doi: 10.22124/AR.2023.20946.1657 [In Persian]
Mohammadi, H., Moradi, M. H., & Farahani, A. H. K. (2022). Genome-wide association study and pathway analysis for identifying the genes associated with coat color in Lori-Bakhtiari sheep breed.
Iranian Journal of Animal Science,
53(3), 153-160. doi:
10.22059/IJAS.2022.329848.653846 [In Persian]
Mohammadi, H., & Sadeghi, M. (2010). Estimation of genetic parameters for growth and reproduction traits and genetic trends of growth traits in Zel sheep breed under rural production system.
Iranian Journal of Animal Science,
41(3), 231-241. doi:
20.1001.1.20084773.1389.41.3.6.9 [In Persian]
Mokhber, M., Moradi-Shahrbabak, M., Sadeghi, M., Moradi-Shahrbabak, H., Stella, A., Nicolzzi, E., Rahmaninia, J., & Williams, J. L. (2018). A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC Genomics, 19, 1-9. doi: 10.1186/s12864-018-4759-x
Mooney, M. A., & Wilmot, B. (2015). Gene Set Analysis: a step-by-step guide. American Journal of Medical Genetics, 168(7), 517-527. doi: 10.1002/ajmg.b.32328
Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G., Brauning, R., & McEwan, J. C. (2021). Hitchhiking mapping of candidate regions associated with fat deposition in iranian thin and fat tail sheep breeds suggests new insights into molecular aspects of fat tail selection. Animals, 12, 1423. doi: 10.3390/ani12111423
Moradi, M. H., Farahani, A. H., & Nejati-Javaremi, A. (2017). Genome-wide evaluation of effective population size in some Iranian sheep breeds using linkage disequilibrium information.
Iranian Journal Animal Science,
48, 39-49. doi:
10.22059/IJAS.2017.213736.653464 [In Persian]
Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G., & McEwan, J. C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 13, 10. doi: 10.1186/1471-2156-13-10
Pacheco, A., Banos, G., Lambe, N., McLaren, A., McNeilly, T. N., & Conington, J. (2024). Genome-wide association studies of parasite resistance, productivity and immunology traits in Scottish Blackface sheep. Animal, 18(2), 101069. doi: 10.1016/j.animal.2023.101069
Parsons, Y. M., Piper, L. R., & Cooper, D. W. (1994). Linkage relationships between keratin-associated protein (KRTAP) genes and growth hormone in sheep. Genomics, 20(3), 500-502. doi: 10.1006/geno.1994.1209
Pasandideh, M., Gholizadeh, M., & Rahimi‐Mianji, G. (2020). A genome‐wide association study revealed five SNPs affecting 8‐month weight in sheep. Animal Genetics, 51(6), 973-976. doi: 10.1111/age.12996
Patiabadi, Z., Razmkabir, M., EsmailizadehKoshkoiyeh, A., Moradi, M. H., Rashidi, A., & Mahmoudi, P. (2024). Whole-genome scan for selection signature associated with temperature adaptation in Iranian sheep breeds. PLoS ONE, 19(8), e0309023. doi: 10.1371/journal.pone.0309023
Pham, K., Frost, S., Parikh, K., Puvvula, N., Oeung, B., & Heinrich, E. C. (2022). Inflammatory gene expression during acute high‐altitude exposure. The Journal of Physiology, 600(18), 4169-4186. doi: 10.1113/JP282772
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., & Bender, D. (2007). PLINK: a toolset for whole-genome association and population-based linkage analysis. The American Journal of Human Genetics, 81, 559-575. doi: 10.1086/519795
Rastifar, M., Nejati-Javaremi, A., Moradi, M. H., & Abdollahi-Arpanahi, R. (2015). Identification of genomic regions associated with wool diameter in Iranian sheep breeds.
Iranian Journal of Animal Science,
46(1), 65-72. doi:
10.22059/IJAS.2015.54592 [In Persian]
Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G. K., Dutt, T., Mishra, B. P., & Singh, R. K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955-963. doi: 10.1016/j.ygeno.2021.02.009
Senczuk, G., Criscione, A., Mastrangelo, S., Biscarini, F., Marletta, D., Pilla, F., Laloë, D., & Ciampolini, R. (2022). How geography and climate shaped the genomic diversity of Italian local cattle and sheep breeds. Animals, 12, 2198. doi: 10.3390/ani12172198
Tian, D., Han, B., Li, X., Liu, D., Zhou, B., Zhao, C., Zhang, N., Wang, L., Pei, Q., & Zhao, K. (2023). Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing. Animal Bioscience, 36(7), 991. doi: 10.5713/ab.22.0432
Vasu, M., Ahlawat, S., Chhabra, P., Sharm, U., Arora, R., Sharma, R., Mir, M. A., & Singh, M. K. (2024). Genetic insights into fiber quality, coat color and adaptation in Changthangi and Muzzafarnagri sheep: A comparative skin transcriptome analysis. Gene, 891, 147826. doi: 10.1016/j.gene.2023.147826
Veerkamp, R. F., Coffey, M. P., Berry, D. P., de Haas, Y., Strandberg, E., Bovenhuis, H., Calus, M. P. L., & Wall, E. (2012). Genome-wide associations for feed utilization complex in primiparous Holstein-Friesian dairy cows from experimental research herds in four European countries. Animal, 6, 1738–1749. doi: 10.1017/S1751731112001152
Wang, S., Dvorkin, D., & Da, Y. (2012). SNPEVG: a graphical tool for GWAS graphing with mouse clicks. BMC Bioinformatics, 13, 1-6. doi: 10.1186/1471-2105-13-319
Wang, S., Yi, X., Wu, M., Zhao, H., Liu, S., Pan, Y., Li, Q., Tang, X., Zhu, Y., & Sun, X. (2019). Detection of key gene InDels in TGF-β pathway and its relationship with growth traits in four sheep breeds. Animal Biotechnology, 32(2), 194-204. doi: 10.1080/10495398.2019.1675682
Wei, C., Wang, H., Liu, G., Zhao, F., Kijas, J. W., Ma, Y., Lu, J., Zhang, L. I., Cao, J., Wu, M., & Wang, G. (2016). Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Scientific Reports, 6(1), 26770. doi: 10.1038/srep26770
Wiener, P., Robert, C., Ahbara, A., Salavati, M., Abebe, A., Kebede, A., Wragg, D., Friedrich, J., Vasoya, D., Hume, D. A., & Djikeng, A. (2021). Whole-genome sequence data suggest environmental adaptation of Ethiopian sheep populations. Genome Biology and Evolution, 13(3), 014. doi: 10.1093/gbe/evab014
Yang, J. I., Li, W. R., Lv, F. H., He, S. G., Tian, S. L., Peng, W. F., Sun, Y. W., Zhao, Y. X., Tu, X. L., Zhang, M., & Xie, X. L. (2016). Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Molecular Biology and Evolution, 33(10), 2576-2592. doi: 10.1093/molbev/msw129
Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Method gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11, 14-23. doi: 10.1186/gb-2010-11-2-r14
Yudin, N., & Larkin, D. M. (2019). Shared signatures of selection related to adaptation and acclimation in local cattle and sheep breeds from Russia. Russian Journal of Genetics, 55, 1008-1014. doi: 10.1134/S1022795419070159.
Zamani, P., Akhondi, M., & Mohammadabadi, M. (2015). Associations of inter-simple sequence repeat loci with predicted breeding values of body weight in sheep.
Small Ruminant Research,
132, 123-127.
doi:10.1016/j.smallrumres.2015.10.018
Zhang, H., Wang, Z., Wang, S., & Li, H. (2012). Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology, 3(1), 26. doi: 10.1186/2049-1891-3-26
Zhang, H., Zhuang, Z., Yang, M., Ding, R., Quan, J., Zhou, S., Gu, T., Xu, Z., Zheng, E., Cai, G., Yang, J., & Wu, Z. (2021). Genome-wide detection of genetic loci and candidate genes for body conformation traits in Duroc × Landrace × Yorkshire crossbred pigs. Frontiers in Genetics, 12, 664343. doi: 10.3389/fgene.2021.664343
Zhang, L., Liu, J., Zhao, F., Ren, H., Xu, L., Lu, J., Zhang, S., Zhang, X., Wei, C., Lu, G., & Zheng, Y. (2013). Genome-wide association studies for growth and meat production traits in sheep. PloS ONE, 8(6), e66569. doi: 10.1371/journal.pone.0066569
Zhuang, Z., Xu, L., Yang, J., Gao, H., Zhang, L., Gao, X., Li, J., & Zhu, B. (2020). Weighted single-step genome-wide association study for growth traits in chinese simmental beef cattle. Genes, 11(2), 189. doi: 10.3390/genes11020189