Adenaike, A. S., Akpan, U., Udoh, J. E., Wheto, M., Durosaro, S. O., Sanda, A. J., & Ikeobi, C. O. N. (2017). Comparative evaluation of growth functions in three broiler strains of Nigerian chickens. Pertanika Journal of Tropical Agricultural Science, 40(4), 611-620.
Aggrey, S. E. (2009). Logistic nonlinear mixed effects model for estimating growth parameters.
Poultry Science,
88(2), 276-280. doi:
10.3382/ps.2008-00317
Barrera-Rivera, D. C., Cotes-Torres, J. M., Amaya, A., & Ceron-Muñoz, M. F. (2024). A new selection criteria to optimize growth in animal breeding programs.
Livestock Science,
282, 105443. doi:
10.1016/j.livsci.2024.105443
Bathaei, S. S., & Leroy, P. L. (1996). Growth and mature weight of Mehraban Iranian fat-tailed sheep.
Small Ruminant Research,
22(2), 155-162. doi:
10.1016/S0921-4488(96)00888-7
Bitaaraf Sani, M., Khojestehkey, M., Zare Harofte, J., & Shafei Naderi, A. (2021). Comparison of linear and non-linear models to predict the growth curve of dromedary camels. Animal Production Research, 10(4), 73-81. doi: 10.22124/AR.2022.18931.1595 [In Persian]
Darmani Kuhi, H., France, J., López, S., & Ghavi Hossein-Zadeh, N. (2019a). A sinusoidal equation as alternative to conventional growth functions to describe the evolution of growth in quail.
Spanish Journal of Agricultural Research,
17(3), e0606. doi:
10.5424/sjar/2019173-14973
Darmani Kuhi, H., López, S., France, J., Mohit, A., Shabanpour, A., Hossein-Zadeh, N. G., & Falahi, S. (2019b). A sinusoidal equation as an alternative to classical growth functions to describe growth profiles in turkeys. Acta Scientiarum. Animal Sciences, 41, e45990. doi: 10.4025/actascianimsci.v41i1.45990
Darmani-Kuhi, H., Porter, T., López, S., Kebreab, E., Strathe, A. B., Dumas, A., Dijkstra, J., & France, J. (2010). A review of mathematical functions for the analysis of growth in poultry. World's Poultry Science Journal, 66(2), 227-240. doi: 10.1017/S0043933910000280
Eleroğlu, H., Yıldırım, A., Şekeroğlu, A., Çoksöyler, F. N., & Duman, M. (2014). Comparison of growth curves by growth models in slow-growing chicken genotypes raised the organic system. International Journal of Agriculture and Biology, 16(3), 529-535.
Ersoy, I. E., Mendeş, M., & Aktan, S. (2006). Growth curve establishment for American Bronze turkeys. Archives Animal Breeding, 49(3), 293-299. doi: 10.5194/aab-49-293-2006
Faraji-Arough, H., Rokouei, M., Maghsoudi, A., & Mehri, M. (2019). Evaluation of non-linear growth curves models for native slow-growing Khazak chickens. Poultry Science Journal, 7(1), 25-32. doi: 10.22069/psj.2019.15535.1355
Gao, C. Q., Yang, J. X., Chen, M. X., Yan, H. C., & Wang, X. Q. (2016). Growth curves and age-related changes in carcass characteristics, organs, serum parameters, and intestinal transporter gene expression in domestic pigeon (
Columba livia)
. Poultry Science,
95(4), 867-877. doi:1
0.3382/ps/pev443
Ghavi Hossein‐Zadeh, N. (2024a). Modeling the growth curve in ducks: a sinusoidal model as an alternative to classical nonlinear models. Poultry Science, 103(8), 103918. doi: 10.1016/j.psj.2024.103918
Ghavi Hossein‐Zadeh, N. (2024b). Introducing an alternative nonlinear model to characterize the growth curve in ostrich. Poultry Science, 103(12), 104465. doi: 10.1016/j.psj.2024.104465
Ghavi Hossein‐Zadeh, N. (2025a). Comparison of nonlinear models for describing the growth curve of Pekin ducks.
Veterinary Medicine and Science,
11(2), e70268. doi:
10.1002/vms3.70268
Ghavi Hossein-Zadeh, N. (2025b). Application of alternative nonlinear models to predict growth curve in partridges. PLoS ONE, 20(4), e0321680. doi: 10.1371/ journal.pone.0321680
Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical transactions of the Royal Society of London, 115, 513-583.
Goto, T., Goto, N., Shiraishi, J. I., Bungo, T., & Tsudzuki, M. (2010). Comparison of growth curves of four breeds of Japanese native chicken, Onaga-dori, Tosa-jidori, Ukokkei and Hinai-dori. Journal of Animal and Veterinary Advances, 9(9), 1362-1365.
Hrncar, C., Bujko, J., & Widya, P. B. P. (2021). The growth curve of Gompertz model in body weight of mixed-sex goose breeds in Slovakia.
Genetics & Biodiversity Journal,
5(1), 28-32. doi:
10.46325/gabj.v5i1.161
Jahan, M., Maghsoudi, A., Rokouei, M., & Faraji-Arough, H. (2024). Comparing some mathematical functions to describe growth pattern in quail. Iranian Journal of Animal Science, 55(2), 301-314. doi: 10.22059/ijas.2023.327800.653838 [In Persian]
Kaplan, S., & Gürcan, E. K. (2018). Comparison of growth curves using non-linear regression function in Japanese quail.
Journal of Applied Animal Research,
46(1), 112-117. doi:
10.1080/09712119.2016.1268965
Kebreab, E., Strathe, A. B., Yitbarek, A., Nyachoti, C. M., Dijkstra, J., López, S., & France, J. (2011). Modeling the efficiency of phosphorus utilization in growing pigs.
Journal of Animal Science,
89(9), 2774-2781. doi:
10.2527/jas.2009-2550
Lee, L., Atkinson, D., Hirst, A. G., & Cornell, S. J. (2020). A new framework for growth curve fitting based on the von Bertalanffy Growth Function.
Scientific Reports,
10(1), 7953. doi:
10.1038/s41598-020-64839-y
Lopez, S., France, J., Gerrits, W. J. J., Dhanoa, M. S., Humphries, D. J., & Dijkstra, J. (2000). A generalized Michaelis-Menten equation for the analysis of growth. Journal of Animal Science, 78(7), 1816-1828. doi: 10.2527/2000.7871816x
Mata-Estrada, A., González-Cerón, F., Pro-Martínez, A., Torres-Hernández, G., Bautista-Ortega, J., Becerril-Pérez, C. M., Vargas-Galicia, A. J., & Sosa-Montes, E. (2020). Comparison of four nonlinear growth models in Creole chickens of Mexico. Poultry Science, 99(4), 1995-2000. doi: 10.1016/j.psj.2019.11.031
Michalczuk, M., Damaziak, K., & Goryl, A. (2016). Sigmoid models for the growth curves in medium-growing meat type chickens, raised under semi-confined conditions. Annals of Animal Science, 16(1), 65. doi:10.1515/aoas-2015-0061
Murunga, P., Kennedy, G. M., Imboma, T., Malaki, P., Kariuki, D., Ndiema, E., Obanda, V., Agwanda, B., Lichoti, J. K., & Ommeh, S. C. (2018). Mitochondrial DNA D‐Loop Diversity of the Helmeted Guinea Fowls in Kenya and Its Implications on HSP70 Gene Functional Polymorphism. BioMed Research International, 2018(1), 7314038. doi: 10.1155/2018/7314038
Mushi, J. R., Chiwanga, G. H., Amuzu-Aweh, E. N., Walugembe, M., Max, R. A., Lamont, S. J., Kelly, T. R., Mollel, E. L., Msoffe, P. L., Dekkers, J., & Muhairwa, A. P. (2020). Phenotypic variability and population structure analysis of Tanzanian free-range local chickens. BMC veterinary research, 16, 1-10. doi: 10.1186/s12917-020-02541-x
Nahashon, S. N., Aggrey, S. E., Adefope, N. A., & Amenyenu, A. (2006a). Modeling growth characteristics of meat-type guinea fowl.
Poultry Science,
85(5), 943-946. doi:
10.1093/ps/85.5.943
Nahashon, S. N., Aggrey, S. E., Adefope, N. A., Amenyenu, A., & Wright, D. (2006b). Growth characteristics of pearl gray guinea fowl as predicted by the Richards, Gompertz, and logistic models.
Poultry Science,
85(2), 359-363. doi:
10.1093/ps/85.2.359
Narınc, D., Aksoy, T., Karaman, E., & Curek, D. I. (2010). Analysis of fitting growth models in medium growing chicken raised indoor system. Trends in Animal and Veterinary Sciences, 1, 12-18.
Narınc, D., Narinç, N. Ö., & Aygün, A. (2017). Growth curve analyses in poultry science. World's Poultry Science Journal, 73, 395-408. doi: 10.1017/S0043933916001082
Nguyen Hoang, T., Do, H. T., Bui, D. H., Pham, D. K., Hoang, T. A., & Do, D. N. (2021). Evaluation of non‐linear growth curve models in the Vietnamese indigenous Mia chicken. Animal Science Journal, 92(1), e13483. doi: 10.1111/asj.13483
Onder, H., Boz, M. A., Sarica, M., Abaci, S. H., & Yamak, U. S. (2017). Comparison of growth curve models in Turkish native geese. European Poultry Science, 81(10), 193. doi: 10.1399/eps.2017.193
Pinheiro, J., Bates, D., Debroy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., Ranke, J., & R Core Team. (2025). Nlme: nonlinear mixed-effects models. R package version 3.1-168.Web, Retrieved April 1, 2025. https://cran.r-project.org/package=nlme
Purwin, C., Wyżlic, I., Pogorzelska-Przybyłek, P., Nogalski, Z., & Białobrzewski, I. (2024). Influence of gender status and feeding intensity on the growth curves of body weight, dry matter intake and feed efficiency in crossbred beef cattle. Journal of Animal and Feed Science, 33, 101-110. doi: 10.22358/jafs/169512/2023
Ramos, S. B., Caetano, S. L., Savegnago, R. P., Nunes, B. N., Ramos, A. A., & Munari, D. P. (2013). Growth curves for ostriches (
Struthio camelus) in a Brazilian population.
Poultry Science,
92(1), 277-282.
doi: 10.3382/ps.2012-02380
Richards, F. J. (1959). A flexible growth function for empirical use. Journal of experimental Botany, 10(2), 290-301. doi: 10.1093/jxb/10.2.290
Ridho, M., Putra, W. P. B., & Sola-Ojo, F. E. (2021). The growth curve of Gompertz and Logistic models in body weight of Ecotype Fulani Chickens (Gallus domesticus), In: The 7th International Conference on Sustainable Agriculture and Environment, IOP Publishing, 637(1), 012098. doi: 10.1088/1755-1315/637/1/012098
Rizzi, C., Contiero, B., & Cassandro, M. (2013). Growth patterns of Italian local chicken populations. Poultry Science, 92(8), 2226-2235. doi: 10.3382/ps.2012-02825
Robertson, T. B. (1908). On the normal rate of growth of an individual, and its biochemical significance. Archiv für Entwicklungsmechanik der Organismen, 25(4), 581-614.
Safari, A., Ahmadpanah, J., Jafaroghli, M., & Karimi, H. (2021). Comparative study of growth patterns for three strains of broiler chickens using mathematical models. Agriculturae Conspectus Scientificus, 86(1), 75-82.
Segura-Correa, J. C., Santos-Ricalde, R. H., & Palma-Avila, I. (2017). Non-Linear model to describe growth Curves of commercial turkey in the tropics of Mexico.
Revista Brasileira de Ciência Avícola,
19(01), 27-32. doi:
10.1590/1806-9061-2016-0246
Şengül, T., Çelik, Ş., Şengül, A. Y., İnci, H., & Şengül, Ö. (2024). Investigation of growth curves with different nonlinear models and MARS algorithm in broiler chickens. PloS one, 19(11), e0307037. doi: 10.1371/journal.pone.0307037
Śmiecińska, K., Stępień, A., & Kubiak, D. (2022). Effect of variety and sex on the carcass and meat quality traits of guinea fowl (Numida meleagris L.). Animals, 12(21), 2916. doi: 10.3390/ani12212916
Susanti, T., & Purba, M. (2018). The growth of local white Muscovy during starter and grower periods.
Journal Ilmu Ternak dan Veteriner,
22(2), 63-67. doi:
10.14334/jitv.v22i2.1615
Teleken, J. T., Galvão, A. C., & Robazza, W. D. S. (2017). Comparing non-linear mathematical models to describe growth of different animals. Acta Scientiarum. Animal Sciences, 39, 73-81. doi: 10.4025/actascianimsci.v39i1.31366
Tjørve, E., & Tjørve, K. M. (2010). A unified approach to the Richards model family for use in growth analyses: Why we need only two model forms. Journal of Theoretical Biology, 267, 417-425. doi: 10.1016/j.jtbi.2010.09.008.
Wang, X.-S., Wu, J., & Yang, Y. (2012). Richards model revisited: Validation by and application to infection dynamics. Journal of Theoretical Biology, 313, 12-19. doi: 10.1016/j.jtbi.2012.07.024
Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of applied mechanics, 18(3), 293-297. doi: 10.1115/1.4010337
Yang, Y., Mekki, D. M., Lv, S. J., Wang, L. Y., Yu, J. H., & Wang, J. Y. (2006). Analysis of fitting growth models in Jinghai mixed-sex yellow chicken. International Journal of Poultry Science, 5(6), 517-521.