مطالعه بیان افتراقی ژن‌های بافت مجرای تخمدان در فاز فولیکولی مرتبط با باروری در بز با استفاده از داده‌های ترانسکریپتومی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی ، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران

چکیده

تخمدان‌ها، اندام‌های تولیدمثلی مهمی در پستانداران ماده هستند که مستقیماً بر چرخه فحلی و توانایی‌های تولیدمثلی تأثیر می‌گذارند. هدف این پژوهش، شناسایی ژن‌های مرتبط با تخمدان در بز نژاد یونشانگ، شامل دو گروه با میزان باروری پایین و باروری بالا و تجزیه هستی‌شناسی ژن‌های شاخص به­منظور شناسایی مسیرهای متابولیکی و فعالیت‌های مولکولی دخیل در مراحل آبستنی است. در این مطالعه، ترانسکریپتوم توالی mRNA  ۱۲ نمونه از بافت مجرای تخمدان بزهای سه‌ساله نژاد بز سیاه یونشانگ از پایگاه اطلاعاتی NCBI  استخراج و ذخیره شد. پیش‌پردازش داده‌ها با استفاده از نرم‌افزارهای FastQC  و Trimmomatic  انجام شد. تجزیه بیان افتراقی ژن‌ها با استفاده از بسته نرم‌افزاری Cufflinks  و تجزیه هستی‌شناسی ژن‌ها با کمک پایگاه‌های دادهDAVID  وGENECARD  صورت گرفت. در نهایت، ۶۹۰۰۵ شناسه ژن روی ترانسکریپتوم دو گروه شناسایی شد، تنها ژن‌هایی با  log2 fold change ≥ ±3  و q-value < 0.05  به­عنوان ژن‌های شاخص، انتخاب شدند که شامل ۲۲ ژن بود. بیشترین میزان بیان در ژن‌های LGALS15، LGALS16، U1 و XLOC_03533 مشاهده شد. شاخص‌ترین ژن از نظر میزان بیان در هر دو گروه، شناسه ژن،XLOC_019343  است که در گروه باروری پایین‌تر، بیشتر بیان شده، اما در پایگاه‌های اطلاعاتی فاقد نام اختصاصی است. بیشترین بیان در گروه با باروری بالا مربوط به ژنXLOC_03533  و در گروه با باروری پایین مربوط به ژن‌های LGALS15،LGALS16  وU1  است که بالاترین تفاوت بیان را نیز نشان دادند. این ژن‌ها در فرآیندهایی مانند بازسازی آندومتر، لانه‌گزینی جنین، تشکیل جفت و سازگاری ساختاری و عملکردی مرتبط با فرآیندهای تولیدمثلی نقش دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of differential expression of ovarian duct tissue genes in the follicular phase associated with fertility in the goat using transcriptomics data

نویسندگان [English]

  • F. Esmaeili Lima
  • H. Moradi Shahrbabak
  • M. Gholami Tahoneh
Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Introduction: High fertility of goats is a key economic trait that has a direct impact on production efficiency in the goat industry. Many goat breeds have one or two kids per litter, and as the number of kids per litter increases, the amount of meat, milk, and other related products increases in proportion. The oviduct, as the main route of gamete transmission, plays a key role in mammalian fertility and provides a suitable environment for oocyte maturation, sperm capacitation, fertilization, and early embryo transfer. The follicular phase, which is accompanied by an increase in follicle-stimulating hormone (FSH) levels and the growth of dominant follicles, is of particular importance because it plays an important role in oocyte maturation and fertility. Among the many types of gene expression data, RNA-seq data has a great advantage over other types of data due to its high throughput and inclusion of sequences of transcribed regions and coverage of all these regions. In recent years, computer capabilities have made it possible to analyze this volume of data in a timely and cost-effective manner. One of the advantages of using RNA-seq data is the identification of new genes. The study aimed to identify oviductal genes in two groups of goats, low fertility (birth of one kid) and high fertility (birth of two or more kids), and to analyze the ontology of index genes, metabolic pathways, and molecular processes involved in the foetal stage.
Materials and methods: To investigate gene expression patterns in oviduct tissue, RNA-seq data from 12 samples of 3-year-old female Yushang goats sequenced by China Agricultural University using the Illumina NovaSeq 6000 platform were used. The original SRA format files were converted to FASTQ format using SRA Toolkit v2.10.2 software. Data quality was assessed using FastQC v0.11.9 software and its graphical interface in a Java environment. Based on the quality assessment results, if necessary, paired-end data were corrected and cleaned using Trimmomatic v0.39 software. After cleaning, the data were again evaluated for quality with FastQC. To prepare the reference genome for alignment, its indexing was performed using Hisat2 v2.2.1 software, and then, using the same software, the cleaned reads were aligned to the reference genome. The SAM format outputs were converted to BAM format and sorted, indexed, and prepared for the next steps using the Samtools software package. Cufflinks v2.2.1 was used to assemble the transcriptomes, and after independent assembly of each sample, the transcriptome files generated were merged with the Cuffmerge software and converted into a single reference file. Finally, to display the results in the form of graphs and charts, the CummeRbund package was used in the R software environment, and gene ontology and biological pathway analyses related to differentially expressed genes were performed using the GENECARD (https://www.genecards.org) and DAVID (https://david.ncifcrf.gov/) databases.
Results and discussion: A total of 69,005 gene identifiers were detected across both groups, from which only those with a |log₂ fold change| ≥ 3 and q-value<0.05 were selected as differentially expressed genes (DEGs), resulting in 22 candidate genes. The highest expression levels were observed in LGALS15, LGALS16, U1, and XLOC_03533. The most prominent gene in terms of expression difference between the two groups was XLOC_019343, which showed greater expression in the low-fertility group but remains uncharacterized in public databases. XLOC_03533 was the most highly expressed gene in the high-fertility group, while LGALS15, LGALS16, and U1 were dominant in the low-fertility group, with the largest expression disparities. These genes are implicated in critical reproductive processes such as endometrial remodeling, embryo implantation, placental formation, and structural and functional adaptations of the reproductive system.
Conclusions: 22 genes associated with high and low fertility were identified on the transcriptome of the samples, which played a role in processes such as pregnancy establishment, endometrial remodeling, embryo implantation and placenta formation, regulation of the pH of the fallopian tube for sperm entry, prevention of some placental diseases, pathological inflammatory response, structural and functional adaptation for reproductive processes, and regulation of the gestation period. The results of this study can provide additional information to understand the relationship between effective genes and their pathways on the effect of fertility rate in Yushang goats, which can be generalized to other goat breeds.

کلیدواژه‌ها [English]

  • Fertility
  • Goat
  • Transcriptomics data
  • Follicular phase
  • Ovarian duct
Abdoli, R., Zamani, P., Mirhosseini, S. Z., Ghavi Hossein-Zadeh, N., & Nadri, S. (2016). A review on prolificacy genes in sheep. Reproduction in Domestic Animals, 51, 631-637. doi: 10.1111/rda.12733
Abplanalp, J., Laczko, E., Philp, N. J., Neidhardt, J., Zuercher, J., Braun, P., Schorderet, D. F., Munier, F. L., Verrey, F., & Berger, W. (2013). The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Human Molecular Genetics, 22(16), 3218-3226. doi: 10.1093/hmg/ddt175
Banabazi, M., Naserkheil, M., & Miraei-Ashtiani, R. (2012). Algorithm to identify genes expressed differently in the yeast Saccharomyces cerevisiae microarray data using software packages R. The third National Conference on Agricultural Biotechnology. Ferdowsi University of Mashhad, Mashhad, Iran. [In Persian]
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi: 10.1093/bioinformatics/btu170
Chakraborty, D., Cui, W., Rosario, G. X., Scott, R. L., Dhakal, P., Renaud, S. J., Tachibana, M., Rumi, M. K., Mason, C. W., & Krieg, A. J. (2016). HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia. Proceedings of the National Academy of Sciences, 113(46), E7212-E7221. doi: 10.1073/pnas.1612626113
Chang, H.-M., Qiao, J., & Leung, P. C. (2017). Oocyte–somatic cell interactions in the human ovary—novel role of bone morphogenetic proteins and growth differentiation factors. Human Reproduction Update, 23(1), 1-18. doi: 10.1093/humupd/dmw039
Ekblom, R., & Galindo, J. (2011). Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity, 107(1), 1-15. doi: 10.1038/hdy.2010.152
Ely, Z. A., Moon, J. M., Sliwoski, G. R., Sangha, A. K., Shen, X.-X., Labella, A. L., Meiler, J., Capra, J. A., & Rokas, A. (2018). The impact of natural selection on the evolution and function of placentally expressed galectins. bioRxiv, 505339. doi: 10.1101/505339
Esmaeili Fard, S., Hafezian, S., Gholizadeh, M., & Abdolahi Arpanahi, R. (2019). Gene set enrichment analysis using genome-wide association study to identify genes and biological pathways associated with twinning in Baluchi sheep. Animal Production Research, 8(2), 63-80.
Gan, Q., Chepelev, I., Wei, G., Tarayrah, L., Cui, K., Zhao, K., & Chen, X. (2010). Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Research, 20(7), 763-783. doi: 10.1038/cr.2010.64
Ganguly, A., Meur, S. K., & Ganguly, I. (2013). Changes in circulatory FSH of Barbari goats following treatment with high molecular weight inhibin isolated from buffalo follicular fluid. Research in veterinary science, 95(2), 374-380. doi: 10.1016/j.rvsc.2013.03.01
Gholami Tahoone, M., & Moradi SharBabak, H. (2022). Differential genes expression of blood tissue related to pre-calving ketosis in holstein cow using transcriptomics data. Research on Animal Production, 13(36), 147-153. [In Persian]
Haas, B. J., & Zody, M. C. (2010). Advancing RNA-seq analysis. Nature biotechnology, 28(5), 421-423. doi: 10.1038/nbt0510-421
Hayes, H., Bonfils, J., Faure, M., & Papet, I. (2000). Assignment [sup 1] of BCAT1, the gene encoding cytosolic branched chain aminotransferase, to sheep chromosome band 3q33 and to cattle and goat chromosome bands 5q33 by in situ hybridization. Cytogenetics & Cell Genetics, 90. doi: 10.1159/00001566.
Hunter, R. (2012). Components of oviduct physiology in eutherian mammals. Biological Reviews, 87(1), 244-255. doi: 10.1111/j.1469-185X.2011.00196.x
Ikeda, T. (2010). NDP kinase 7 is a conserved microtubule-binding protein preferentially expressed in ciliated cells. Cell Structure and Function, 35(1), 23-30. doi: 10.1247/csf.09016
Kanthawat, S., Srisuwatanasagul, K., Thatsanabunjong, F., Chaivoravitsakul, N., Panyaboriban, S., & Srisuwatanasagul, S. (2024). Morphophysiological assessment of the cervix during the reproductive cycle and early pregnancy in does using computed tomography and oxytocin receptor immunohistochemistry. Animals, 14(19), 2793. doi: 10.3390/ani14192793
Kuang, H., Chen, Q., Fan, X., Zhang, Y., Zhang, L., Peng, H., Cao, Y., & Duan, E. (2009). CXCL14 inhibits trophoblast outgrowth via a paracrine/autocrine manner during early pregnancy in mice. Journal of Cellular Physiology, 221(2), 448-457. doi: 10.1002/jcp.21877
Lin, Y., Sun, L., Dai, J., Lv, Y., Liao, R., Shen, X., & Gao, J. (2024). Characterization and Comparative Analysis of Whole-Transcriptome Sequencing in High-and Low-Fecundity Chongming White Goat Ovaries during the Estrus Phase. Animals, 14(7), 988. doi: 10.3390/ani14070988
Ling, Y., Quan, Q., Xiang, H., Zhu, L., Chu, M., Zhang, X., & Han, C. (2015). Expression profiles of differentially expressed genes affecting fecundity in goat ovarian tissues. Genetics and Molecular Research, 14(4), 18743-18752. doi: 10.4238/2015.December.28.23
Liu, L., & Fang, F. (2022). Long noncoding RNA mediated regulation in human embryogenesis, pluripotency, and reproduction. Stem Cells International, 2022(1), 8051717. doi: 10.1155/2022/8051717
Liu, Q., Sun, Z., Liu, Y., He, X., Ren, C., Wang, X., Di, R., Zhao, Y., Zhang, Z., & Chu, M. (2025). Whole transcriptome analysis in oviduct provides insight into microRNAs and ceRNA regulative networks that targeted reproduction of goat (Capra hircus). BMC Genomics, 26(1), 250. doi: 10.1186/s12864-025-11438-8
Liu, Y., Zhou, Z., He, X., Tao, L., Jiang, Y., Lan, R., Hong, Q., & Chu, M. (2021). Integrated analyses of miRNA-mRNA expression profiles of ovaries reveal the crucial interaction networks that regulate the prolificacy of goats in the follicular phase. BMC Genomics, 22, 1-19. doi: 10.1186/s12863-021-00963-6
Marguerat, S., & Bähler, J. (2010). RNA-seq: from technology to biology. Cellular and Molecular Life Sciences, 67, 569-579. doi: 10.1007/s00018-009-0180-6
McBride, D., Carr, W., Sontakke, S., Hogg, C. O., Law, A., Donadeu, F. X., & Clinton, M. (2012). Identification of miRNAs associated with the follicularluteal transition in the ruminant ovary. Reproduction, 144(2), 221. doi: 10.1530/REP-12-0025
Menchaca, A., Pinczak, A., & Rubianes, E. (2002). Follicular recruitment and ovulatory response to FSH treatment initiated on day 0 or day 3 postovulation in goats. Theriogenology, 58(9), 1713-1721. doi: 10.1016/S0093-691X(02)01084-1
Miller, W. L., & Auchus, R. J. (2011). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine Reviews, 32(1), 81-151. doi: 10.1210/er.2010-0013
Morammazi, S., Masoudi, A., Vaez Torshizi, R., & Pakdel, A. (2016). Changes in the expression of the prolactin receptor (PRLR) gene in different physiological stages in the mammary gland of the Iranian Adani goat. Reproduction in Domestic Animals, 51(4), 585-590. doi: 10.1111/rda.12723
Mostert, P., Bokkers, E., Van Middelaar, C., Hogeveen, H., & De Boer, I. (2018). Estimating the economic impact of subclinical ketosis in dairy cattle using a dynamic stochastic simulation model. Animal, 12(1), 145-154. doi: 10.1017/S1751731117001306
Otsuka, M., Zheng, M., Hayashi, M., Lee, J.-D., Yoshino, O., Lin, S., & Han, J. (2008). Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. The Journal of Clinical Investigation, 118(5), 1944-1954. doi: 10.1172/JCI33680
Pan, Z., Zhang, J., Lin, F., Ma, X., Wang, X., & Liu, H. (2012). Expression profiles of key candidate genes involved in steroidogenesis during follicular atresia in the pig ovary. Molecular Biology Reports, 39, 10823-10832. doi: 10.1007/s11033-012-1976-2
Peng, W., Zhang, Y., Gao, L., Wang, S., Liu, M., Sun, E., Lu, K., Zhang, Y., Li, B., & Li, G. (2025). Investigation of selection signatures of dairy goats using whole-genome sequencing data. BMC Genomics, 26(1), 234. doi: 10.1186/s12864-025-11437-9
Shah, A. M., Cai, Y., Zou, H., Zhang, X., Wang, L., Xue, B., Yu, P., Wang, Z., & Peng, Q. (2019). Effects of supplementation of branches and leaves trimmed from tea plant on growth performance, rumen fermentation and meat composition of Nanjiang yellow goats. Animals, 9(9), 590. doi: 10.3390/ani9090590
Sheedy, F. J., Palsson-McDermott, E., Hennessy, E. J., Martin, C., O'leary, J. J., Ruan, Q., Johnson, D. S., Chen, Y., & O'neill, L. A. (2010). Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nature Immunology, 11(2), 141-147. doi: 10.1038/ni.1828
Simon Andrews, F., Segonds-Pichon, A., Biggins, L., Krueger, C., & Wingett, S. (2010). FastQC: a quality control tool for high throughput sequence data.
Sun, Z., Hong, Q., Liu, Y., He, X., Di, R., Wang, X., Ren, C., Zhang, Z., & Chu, M. (2022). Characterization of circular RNA profiles of oviduct reveal the potential mechanism in prolificacy trait of goat in the estrus cycle. Frontiers in Physiology, 13, 990691. doi: 10.3389/fphys.2022.990691
Tohidi Nezhad, F., Mohammad Abadi, M. R., Esmaeili Zadeh, A., & Najmi Nouri, O. (2015). Comparison of different levels of Rheb gene expression in different tissues of Raini Cashmir goat. Agricultural Biotechnology Journal, 6(4), 37-50.
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L., & Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562-578. doi: 10.1038/nprot.2012.016
Wang, K., Liu, X., Qi, T., Hui, Y., Yan, H., Qu, L., Lan, X., & Pan, C. (2021). Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus). Genomics, 113(1), 142-150. doi: 10.1016/j.ygeno.2020.11.024
Wu, Z.-L., Chen, S.-Y., Qin, C., Jia, X., Deng, F., Wang, J., & Lai, S.-J. (2020). Clinical ketosis-associated alteration of gene expression in Holstein cows. Genes, 11(2), 219. doi: 10.3390/genes11020219
Xu, G., Tian, C., Li, Y., Fang, L., Wang, J., Jing, Z., Li, S., & Chen, P. (2024). Inhibition of BCAT1 expression improves recurrent miscarriage by regulating cellular dysfunction and inflammation of trophoblasts. Cell and Tissue Research, 398(2), 111-121. doi: 10.1007/s00441-024-03921-7
Zhao, L., Yang, Y., Yang, H., Luo, N., Li, X., Zheng, J., Yang, S., & Zhao, Y. (2023). Screening genes related to embryo implantation in Dazu black goats (Capra Hircus) by morphological and transcriptome analyses. Journal of Animal Science, 101, skac401. doi: 10.1093/jas/skac401