مکان یابی QTL کنترل کننده چندقلوزایی در کروموزوم 1 بز مرخز با استفاده از نشانگرهای ریزماهواره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

2 استاد گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

3 استاد گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه گیلان

4 استادیار گروه علوم دامی، دانشکده علوم کشاورزی، دانشگاه گیلان

چکیده

صفت چندقلوزایی از جمله صفات آستانه­ای می­باشد که به­وسیله ژن­های زیادی کنترل می­شود. به دلیل وراثت­پذیری پایین این صفت (حدود 10/0) استفاده از روش‌های کلاسیک اصلاح نژاد، پیشرفت کندی دارد. بنابراین، نیاز به استفاده از فناوری­های جدید در بهبود این صفت می­باشد. طول کروموزوم 1 بز حدود 186 سانتی مورگان می­باشد. با توجه به تحقیقات پیشین و همولوژی بالای نقشه ژنومی گاو و بز، در این تحقیق منطقه بین 16 تا 169 سانتی­مورگان از کروموزوم 1 برای مکان­یابی جایگاه ژنتیکی صفت چندقلوزایی بز مرخز انتخاب شد. جمعیت مورد مطالعه شامل 8 خانواده ناتنی پدری غیرخویشاوند بود. تعداد فرزندان به ازای هر پدر در دامنه 30 تا 40 فرزند قرار داشتند. همه افراد برای 6 نشانگر ریزماهواره مربوط به کروموزوم 1 تعیین ژنوتیپ شدند. مکان­یابی QTLهای کنترل کننده صفت چندقلوزایی در خانواده­های ناتنی پدری با استفاده از نرم افزار GridQTL انجام گرفت. نتایج این تحقیق بیانگر تفرق یک QTL موثر بر چندقلوزایی در موقعیت 165 سانتی­مورگان کروموزوم 1 بز مرخز بود. مکان QTL تعیین شده در نزدیکی نشانگر CSSM19 قرار داشت و توانست 20/2 درصد تغییرات ژنتیکی صفت چندقلوزایی را توصیف کند. QTL مکان­یابی شده در این پژوهش می­تواند در ارتباط با ژن POU1F1 باشد. بنابراین این ژن می­تواند یک ژن کاندید برای اثرات مشاهده شده QTL بر صفت چند قلوزایی در بز مرخز باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of QTL for litter size on chromosome 1 in Markhoz goats using SSR markers

نویسندگان [English]

  • N. Badbarin 1
  • S. Z. Mirhoseini 2
  • B. Rabiei 3
  • N. Ghavi Hossein-Zadeh 4
1 PhD Student, Department of Animal Sciences, Faculty of Agricultural Sciences, University of Guilan
2 Professor, Department of Animal Sciences, Faculty of Agricultural Sciences, University of Guilan
3 Professor, Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan
4 Assistant Professor, Department of Animal Sciences, Faculty of Agricultural Sciences, University of Guilan
چکیده [English]

The litter size is a threshold trait that is controlled by many genes. Due to the low heritability (0.10), of litter size, classical breeding methods lead to slow genetic progress. Hence it is essential to use new technology to improve this trait. Length of chromosome 1 in goat is approximately 186 cM. Based on previously published data in addition to a high genetic homology between goat and cattle choromosome 1, a region between 16 to 169 cM of chromosome 1 was selected for QTL detection of litter size in the Markhoz goat breed. Sample population included 8 paternal half-sib families. The numbers of half-sib offspring per buck ranged from 30 to 40. All individuals were genotyped by six microsatellites specific to chromosome 1. QTL analyses were performed using multiple regression method under a half-sib model. Our study indicated that a QTL in position 165 cM on chromosome 1 affect litter size rate in Markhoz goats. Its location was near to CSSM19 marker and was able to explaining 2.20 percent of the genetic variance of litter size. The QTL detected in this research could be related with POU1F1 gene. Hence this gene could be a candidate for the associated QTL on goat chromosomes 1.

کلیدواژه‌ها [English]

  • Markhoz goats
  • Microsatellite markers
  • Twinning rate
  • QTL
اقبال سعید ش.، طغیانی م.، قائدی ک. و نصر اصفهانی م. ح. 1389. بررسی ژن­های عمده موثر بر تخمک اندازی و چندقلوزایی گوسفندان. ژنتیک در هزاره سوم. 8: 2169-2189.
ایران پور مبارکه و.، اسماعیل زاده کشکوئیه ع. و اسدی خشویی ا. 1390. تجزیه جایگاه­های صفات کمّی (QTL) موثر بر صفات رشد روی کروموزوم 18 در گوسفند نژاد لری-بختیاری. مجله علوم دامی ایران. 42: 11-91.
جلیل سرقلعه ع.، مرادی شهربابک ح.، امینی ح. ر. و خلقی م. 1392. نقش ژن­های عمده بر صفات مهم تولیدی و اقتصادی در بز. ژنتیک در هزاره سوم. 3: 3136-3155.
زندی باغچه مریم م.، مرادی شهر بابک م.، میرایی آشتیانی س. ر.، رشیدی ا. و کاووسی م. 1388. مقایسه بهره­وری کل عوامل تولید گله­های بز مرخز در استان کردستان. پژوهش و سازندگی. 83: 74-81.
Andersson L. 2001. Genetic dissection of phenotypic diversity in farm animals. Natural Review in Genetics, 2: 130-138.
Cady R. A. and Van Vleck L. D. 1978. Factors affecting twinning and effects of twinning in Holstein dairy cattle. Journal of Animal Science, 46: 950-956.
Cano E. M., Marrube G., Roldan D. L., Bidinost F., Abad M., Allain D., Vaiman D., Taddeo H. and Poli M. A. 2007. QTL affecting fleece traits in Angora goats. Small Ruminant Research, 71: 158-164.
Cano E. M., Debenedetti S., Abad M., Allain D., Taddeo H. R. and Poli M. A. 2009. Chromosomal segments underlying quantitative trait loci for mohair production in Angora goats. Animal Genetic Resources Information, 45: 107-112.
Cobanoglu O., Berger P. J. and Kirkpatrick B. W. 2005. Genome screen for twinning rate QTL in four North American Holstein families. Animal Genetic, 36: 303-308.
Cruickshank J., Dentine M. R., Berger P. J. and Kirkpatrick B. W. 2004. Evidence for quantitative trait loci affecting twinning rate in North American Holstein cattle. Animal Genetic, 35: 206-212.
Feng T., Chu M. X., Cao G. L., Tang Q. Q., Di R., Fang L. and Li N. 2012. Polymorphisms of caprine POU1F1 gene and their association with litter size in Jining Grey goats. Molecular Biology Report, 39: 4029-4038.
Hanrahan J. P., Gregan S. M., Mulsant P., Mullen M., Davis G. H., Powell R. and Galloway S. 2004. Mutations in the genes for oocyte derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep. Biological Reprod, 70: 900-909.
Knott S., Elsen A. J. M. and Haley C. S. 1996. Methods for multiple-marker mapping of quantitative trait loci in half sib populations. Theoretical Applied Genetic, 93: 71-80.
Lan X. Y., Pan C. Y., Chen H., Lei C. Z., Hua L. S., Yang X. B., Qiu G. Y., Zhang R. F. and Lun Y. Z. 2007. DdeI polymorphism in coding region of goat POU1F1 gene and its association with production traits. Asian Australasian Journal of Animal Science, 20: 1342-1348.
Lien S., Karlsen A., Klemetsdal G., Vage D. I., Olsaker I., Klungland H., Aasland M., Heringstad B., Ruane J. and Gomez-Raya L. 2000. A primary screen of the bovine genome for quantitative trait loci affecting twinning rate. Mammalian Genome, 11: 877-882.
Liu B. H. 1998. Statistical Genomics; Linkage, Mapping and QTL analysis. CRC Press, LLC, USA.
Maddox J. F. and Cockett N. E. 2007. An update on sheep and goat linkage maps and other genomic resources. Small Ruminant Research, 70: 4-20.
Mohammad Abadi M. R., Askari N., Baghizadeh A. and Esmailizadeh A. K. 2009. A directed search around caprine candidate loci provided evidence for microsatellites linkage to growth and cashmere yield in Rayini goats. Small Ruminant Research, 81: 146-151.
Seaton G., Hernandez J., Grunchec J. A., White I., Allen J., de Koning D. J., Wei W., Berry D., Haley C. and Knott S. 2006. GridQTL: a grid portal for QTL mapping of compute intensive datasets, In: Proceedings of the 8th Word Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil.
Visser C., Crooijmans R. P. M. A. and Van Marle Köster E. 2010. A genetic linkage map for the South African Angora goat. Small Ruminant Research, 93: 171-179.
Visser C., Van Marle-Koster E., Bovenhuis H. and Crooijmans R. P. M. A. 2011. QTL for mohair traits in South African Angora goats. Small Ruminant Research, 100: 8-14.
Visser C., Van Marle-Koster E., Snyman M. A., Bovenhuis H. and Crooijmans R. P. M. A. 2013. Quantitative trait loci associated with pre-weaning growth in South African Angora goats. Small Ruminant Research, 112: 15-20.
Weller J. I., Golik M., Seroussi E., Ron M. and Ezra E. 2008. Detection of Quantitative Trait Loci Affecting Twinning Rate in Israeli Holsteins by the Daughter Design. Journal of Dairy Science, 91: 2469-2474.