طراحی نرم‌افزار پیش‌بینی ارزش ارثی حیوانات با استفاده از اطلاعات کمی و مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد دانشکده کشاورزی دانشگاه زنجان

2 دانشیار دانشکده کشاورزی دانشگاه زنجان

3 پژوهشکدة فیزیولوژی و بیوتکنولوژی دانشگاه زنجان

چکیده

در تحقیق حاضر اقدام به تولید نرم­افزار MAS شد. این نرم­افزار برای پیش­بینی ارزش ارثی از تلفیق اطلاعات کمی و مولکولی استفاده می­نماید. بعضی از ژن­هایی که یک صفت را کنترل می­کنند، می­توانند نسبت به بقیه دارای اثرات بزرگی باشند. این قبیل ژن­ها، ژن­های با اثر بزرگ نامیده می­شوند که در QTL هامکان­یابی می­شوند. دنبال کردن الگوی توارث این قبیل QTLها می­تواند برای کمک به انتخاب مورد استفاده قرار بگیرد. این موضوع مجالی برای افزایش برنامه­های پیشرفت ژنتیکی حیوانات اهلی به وسیله انتخاب به کمک نشانگرها (MAS) را فراهم می­سازد. کارایی انتخاب به کمک نشانگرها بر شاخصی متشکل از اطلاعات فنوتیپی و مولکولی پایه گذاری شده است. نرم افزار MAS براساس روش­های مدل مختلط (MMM) با زبان برنامه­نویسی C# تهیه شد. در این نرم افزار از مدل دام برای پیش­بینی ارزش ارثی به فرم ماتریسی استفاده شد. با تعیین پلی‌مورفیسم ناحیه پروموتور ژن DGAT1، پس از استخراج DNA از نمونه­های خون، مراحل PCR روی نمونه‌های DNAانجام گرفت. فراوانی­های آللی و ژنوتیپی حیوانات مشخص شد. از نرم افزار MAS برای پیش بینی ارزش ارثی تعداد 80 رأس از بره­های نر گله اصلاح نژادی طرح ملی اصلاح نژاد گوسفند افشاری مزرعه آموزشی دانشگاه زنجان استفاده شد. جهت مقایسه نتایج پیش بینی ارزش ارثی با روش مذکور، از نرم افزار SAS استفاده شد. مقایسه نتایج پیش­بینی ارزش ارثی با نرم­افزار MAS و SAS، نشان­دهنده اثر ورود نشانگرهای مولکولی در انتخاب براساس تلفیق اطلاعات کمی و مولکولی است.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a software for prediction of animal breeding values using quantitative and molecular information

نویسندگان [English]

  • S. Rafiee 1
  • M. Eskandari Nasab 2
  • D. Salimi 3
  • T. Harkinezhad 3
  • R. Khoramtaei 3
1 Former M. Sc. Student, Faculty of Agriculture, University of Zanjan
2 Associate Professor, Faculty of Agriculture, University of Zanjan
3 Physiology and Biotechnology Institute, University of Zanjan
چکیده [English]

The present study was attempted to produce MAS software. This software uses a combination of
quantitative and molecular information for the prediction of breeding values. Some genes that control
a trait have major effects comparing with others. These genes are called major genes which are located
on QTLs (quantitative trait loci). Our understanding on inheritance pattern of QTL can be helpful in
selection programs via marker assisted selection (MAS). This provides an opportunity to increase the
genetic progress of domestic animals by MAS. The marker assisted selection performance are based
on an index, consists of phenotypic and molecular markers data. The MAS software based on mixed
model methods (MMM) was established with the C# programming language. This software designed
based on animal models with matrix form for predicting breeding values. To identify polymorphism in
promoter region of DGAT1 gene, DNA was extracted from blood samples, the PCR process
performed on DNA samples. Allelic and genotypic frequencies of animals were characterized. MASS
software was used for the prediction of breeding values for 80 male lambs of Afshari sheep in
research-education farm of Zanjan University. To compare the results, analyses were also performed
using SAS software. Comparing the predicted breeding values obtained from MAS software and SAS
indicated the effect of molecular marker in selection based on the combination of molecular and
phenotypic information.

کلیدواژه‌ها [English]

  • Afshari sheep
  • Breeding value
  • Molecular Marker
  • QTL
Andersson L. 2001. Genetic dissection of
phenotypic diversity in farm animals. Natural
Review in Genetics, 2: 130– 138.
Dekkers J. C. M. 2004. Commercial application of
marker- and gene-assisted selection
in livestock: Strategies and lessons. Journal of
Animal Science, 82: E313– E328.
Fernando R. L. and Grossman M. 1989. Marker
assisted selection using best linear unbiased
predictin. Genetics Selection Evolution, 467- 477.
Goddard M. E. and Hayes B. j. 2007. Genomic
selection. Journal of Animal Breeding and Genetics,
124: 323– 330.
Henderson C. R. 1976. A simple method for
computing the inverse of a numerator relationship
matrix used in prediction of breeding values,
Biometrics, 32: 69– 83.
Heaton M. P., Grosse W. M., Kappes S. M., Keele J.
W. and Chitko-McKown C. G. 2001. Estimation of
DNA sequence diversity in bovine cytokine genes.
Mammalian Genome, 12: 32–37.
Koning D. J., Pong- Wong R., varona L., Evans G
.J., Giuffra E., Sanchez A., Plastow G., Noguera J.
L., Andersson L. and Haley C. S. 2003. Full
pedigree quantitative trait locus analysis in
commercial pigs using variance components. Journal
of Animal Science, 9: 2155-2163.
Liviu R. T., Fernando R.L., Dekkers C. M. and
Fernandez A. 2004. The effect of using approximate
gametic variance covariance matrices on marker
assisted selection by BLUP. Genetics, 36: 29– 48.
Markovtsova L., Marjoram P. and Tavare S. 2000.
The age of a unique event polymorphism. Genetics,
156: 401– 409.
Misztal I. 2006. Challenges of application of marker
assisted selection– a review. Animal Science Papers
and reports, 24: 5- 10.
Moreau L., Charcosset A., Hospital F. and Gallais
A. 1998. Marker-Assiste Selection Efficiency in
Populations of Finite Size. Genetics, 148: 1353-1365
Scate M. C., Napolitano F., Casu S., Carta, A.
and Matteis G. 2009. Ovine Acyle CoA:
Diacylglycerol acyltransferase 1- milecular
characterization, polymorphisms and
association with milk traits. Animal Genetics,
40: 737- 742.
Williams J. L. 2005. The use of marker-assisted
selection in animal breeding and biotechnology
.Review in Scince and Technology, 379- 391.
Xu Q. L., Chen Y. L. and Xue P. 2008.
Polymorphism of DGAT1 associated with
intramuscular fat-mediated tenderness in sheep. Scince of Food and Agriculture, 89: 232– 237.