استخراج شبکه بین زیست‏ نشانگرهای ترانسکریپتومی ورم پستان گاو شیری ناشی از باکتری استافیلوکوکوس اورئوس با استفاده از ژنوم انسان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار زیست سامانه‌های محاسباتی، گروه علوم دامی، دانشکده کشاورزی، دانشگاه یاسوج

2 دانشجوی کارشناسی ارشد اصلاح نژاد دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه یاسوج

3 استادیار فیزیولوژی دامی، گروه علوم دامی، دانشکده کشاورزی، دانشگاه یاسوج

چکیده

ورم پستان یکی از بیماری‌های عفونی غدد پستانی در گاوهای شیری است که در چند دهه‌ اخیر، به عنوان یکی از مهم‌ترین بیماری‌هایی که منجر به ضرر اقتصادی در صنعت گاو شیری می‌شود، مورد توجه زیادی قرار گرفته است. وراثت‌پذیری ورم‌ پستان پایین است و لذا مدیریت اصلاح نژادی آن کار سختی به شمار می‌رود. با توجه به اهمیت بیماری ورم پستان در مدیریت واحد‌های پرورش گاو شیری و ساز و کار مولکولی پیچیده درگیر در این بیماری، استخراج شبکه بین زیست‌نشانگرهای ترانسکریپتومی ورم پستان با استفاده از داده‌های امیکس موجود در گونه‌هایی مثل انسان، که حاشیه‌نویسی ژنومی قابل اعتمادی دارند، معقول به نظر می‌رسد. در این پژوهش با استفاده از برازش یک مدل خطی مشابه روی هر ژن یک آزمایش ریزآرایه DNA انجام شده ناشی از استافیلوکوکوس اورئوس بر پستان گاو شیری، فهرستی از ژن‌های متفاوت بیان شده یا زیست‌نشانگرهای ترانسکریپتومی گاوی به­دست آمدند. نتایج نشان داد ژن‌های رمز کننده‌ سایتوکین‌ها و کایموکین‌های CXCL5، CCL2،CXCL2 ، CXCL3، CXCL8 و SAA3 در اثر ورم پستان ناشی از استافیلوکوکوس اورئوس، بیان متفاوتی داشتند. در این پژوهش با نگاشت مجموعه ژن‌های متفاوت بیان شده روی ژنوم انسان، ژن‌های ارتولوگ انسان و گاو به­دست آمدند. شبکه زیست‎نشانگری به­دست آمده از ژن‌های ارتولوگ انسان نشان داد که نشانگر APP (Amyloid beta precursor protein) بیش‏ترین درجه ارتباط را با سایر نشانگرهای ترانسکریپتومی دارد. به نظر می­رسد از نتایج این پژوهش بتوان در برنامه‌های اصلاح نژادی و تهیه­ دارو برای درمان ورم پستان استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Extracting transcriptomic biomarker network in Staphylococcus aureus driven dairy cow’s mastitis using human genome

نویسندگان [English]

  • M. Ghaderi-Zefrehei 1
  • F. Arjmand 2
  • F. Samadian 3
  • M. Meamar 3
1 Assistant Professor in Systems Biology, Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran
2 MSc. Student in Animal Breeding, Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran
3 Assistant Professor in Animal Physiology, Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran
چکیده [English]

Mastitis, as one of the most economically important cost-driven diseases in dairy cow industry, is an inflammation-driven disease of the bovine mammary gland that in recent decades has casted lots of attention. Mastitis has low heritability; therefore, it is a cumbersome job to manage it from animal breeding point of view. Considering the management of mastitis in dairy farms production and the nature of complex molecular mechanisms involving in this disease, extracting mastitis's transcriptomic biomarkers network using OMICS data due to some well-annotated genomes like human genome, sounds to be entirely compelling. In this research, by fitting a linear model on each gene of a Staphylococcus aureus governed DNA microarray experiment performed in dairy cow udder, a list of differentially expressed genes or biomarkers were obtained. It was dissected that genes encoding cytokines and chemokine's e.g. CXCL5, CCL2 ,CXCL2, CXCL3, CXCL8 shown differentially expressed pattern in staphylococcus aureus driven dairy’s cow mastitis. Biomarker network due to human genome orthologous genes indicated that APP (amyloid beta precursor protein) gene or biomarker shown the maximum degree of connection with other biological transcriptomic biomarkers. The results of this study can be used in breeding programs and drug-targeting studies to cure mastitis.

کلیدواژه‌ها [English]

  • Genome annotation
  • DNA microarray
  • Biomarkers
  • Cytokines
Abbas A. K. and Lichtman A. H. 2010. Basic Immunology: Functions and disorders of the immune system (3rd ed). Saunders, Elsevier Health Science. Pp. 100-312.
Anderson L. 2012. Candidate based proteomics in the search for biomarkers of cardiovascular disease. Journal of Physiology, 563: 23-60.
Baggiolini M. and Clark-Lewis I. 1992. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters, 307: 97-101.
Bakhtiarizadeh M. R., Moradi-Shahrbabak M. and Ebrahimie E. 2014. Transcriptional regulatory network analysis of the over-expressed genes in adipose tissue. Genes and Genomics, 36(1): 105-117.
Bautista A. P. and Spitzer J. J. 1992. Acute ethanol intoxication stimulates superoxide anion production by in situ perfused rat liver. Hepatology, 15(5): 892-898.
Cánovas A., Reverter A., DeAtley K. L., Ashley R. L., Colgrave M. L., Fortes M. R. and Silver G. A. 2014. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle. PloS One, 9(7): e1022551.
Carballo E., Lai W. S. and Blackshear P. J. 1998. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science, 281: 1001-1005.
Chen X., Cheng Z., Zhang S., Werling D. and Wathes D. C. 2015. Combining genome wide association studies and differential gene expression data analyses identifies candidate genes affecting mastitis caused by two different pathogens in the dairy cow. Open Journal of Animal Sciences, 5: 358-393.
Deforge L. E., Fantone J. C., Kenney J. S. and Remick D. G. 1992. Oxygen radical scavengers selectively inhibit interleukin-8 production in human whole blood. Journal of Clinical Investigation, 90: 2123-2129.
Dermitzakis E. T. 2008. From gene expression to disease risk. Nature Genetics, 40(10): 492-493.
Fortes M. R. S., Snelling W. M., Reverter A., Nagaraj S. H., Lehnert S. A., Hawken R. J. and Medrano J. F. 2012. Gene network analyses of first service conception in Brangus heifers: use of genome and trait associations, hypothalamic-transcriptome information, and transcription factors. Journal of Animal Science, 90(9): 2894-2906.
García-Gámez E., Reverter A., Whan V., McWilliam S. M. and Arranz J. J. 2011. Using regulatory and epistatic networks to extend the findings of a genome scan: Identifying the gene drivers of pigmentation in Merino sheep. PloS One, 6(6): e21158.
Gronlund U., Sandgren C. H. and Waller K. P. 2005. Haptoglobin and serum amyloid in milk from dairy cows with choronic sub-clinical mastitis. Veterinary Research, 36(2): 191-198.
Grob C., Bravo G. and Walsh R. 1990. Second thoughts on 3,4-methylenedioxymethamphetamine (MDMA) neurotoxicity. Archives of General Psychiatry, 47: 288-298.
Jaeger A., Bardehle D., Oster M., Günther J., Muráni E., Ponsuksili S., Wimmers K. and Kemper N. 2015. Gene expression profiling of porcine mammary epithelial cells after challenge with Escherichia coli and Staphylococcus aureus in vitro. Veterinary Research, 46(1): 50-58.
Juliane G., Kathrin E., Norbert P., Wolfram P., Holm Z., Simone M., Helmut B. and Hans-Martin S. 2011. Comparative kinetics of Escherichia coli and Staphylococcus aureus-specific activation of key immune pathways in mammary epithelial cells demonstrates that S.aureus elicits a delayed response dominated by interleukin-6 (IL6) but not by IL-1A or tumor necrosis factor alpha. American Society for Microbiology, 79: 695-707. 
Kogelman L. J., Cirera S., Zhernakova D. V., Fredholm M., Franke L. and Kadarmideen H. N. 2014. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model. BMC Medical Genomics, 7(1): 57-69.
Lee J., Hartman M. and Kornfeld H. 2009. Macrophage apoptosis in tuberculosis. Yonsei Medical Journal, 50(1): 1-11.
Li C. J., Li R. W. and Elsasser T. H. 2010. Alpha-tocopherol modulates transcriptional activities that affect essential biological processes in bovine cells. Gene Regulation and Systems Biology, 4: 109-124.
Liang J., Wang J., Azfer A., Song W., Tromp G., Kolattukudy P. E. and Fu M. 2008. A novel CCCH-zinc finger protein family regulates pro-inflammatory activation of macrophages. Journal of Biological Chemistry, 283: 6337-6346.
Lim D., Cho Y. M., Lee S. H., Chai H. H. and Kim T. H. 2013. Gene co-expression network analysis of reproductive traits in bovine genome. Reproductive and Developmental Biology, 37(4): 185-192.
Matsushita K., Takeuchi O., Standley D. M., Kumagai Y., Kawagoe T., Miyake T., Satoh T., Kato H., Tsujimura T., Nakamura H. and Akira S. 2009. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 458: 1185-1190.
Nash D. L., Rogers G. W., Cooper J. B., Hargrove G. L., Keown J. F. and Hansen L. B. 2000. Heritability of clinical mastitis incidence and relationships with sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield. Journal of Dairy Science, 83(10): 2350-2360.
Pelus L. M. and Fukuda S. 2006. Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Experimental Hematology, 34: 1010-1020.
Piro R. M. and Cunto F. D. 2012. Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS Journal, 279: 678-696.
Radostis O. M., Gay C. C., Hincncliff K. M. and Constable P. D. 2006. Veterinary Medicine (3rd Ed). Washington, Saunders Ltd. Pp. 673-674.
Rainer J., Sanchez-Cabo F., Stocker G., Sturn A. and Trajanoski Z. 2006. CARMAweb: comprehensive R-and bioconductor-based web service for microarray data analysis. Nucleic Acids Research, 34 (Web Server issue): W498-W503.
Ramayo-Caldas Y., Fortes M. R. S., Hudson N. J., Porto-Neto L. R., Bolormaa S., Barendse W. and Reverter A. 2014. A marker-derived gene network reveals the regulatory role of, and in intramuscular fat deposition of beef cattle. Journal of Animal Science, 92(7): 2832-2845.
Rupp R. and Boichard D. 2003. Genetics of resistance to mastitis in dairy cattle. Veterinary Research, 34(5): 671-688.
Sanduja S., Blanco F. F., Young L. E., Kaza V. and Dixon D. A. 2012. The role of tristetraprolin in cancer and inflammation. Frontiers in Bioscience, 17: 174-188.
Seitz R., Roland P., Bohm C., Greitz T. and Stone-Elander S. 1991. Somatosensory discrimination of shape: Tactile exploration and cerebral activation. European Journal of Neuroscience, 3: 481-492.
Smyth G. K. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3(1): 3.
Strunz S. 2014. Inferring a core transcriptional regulatory network in cows. In Proceeding of 10th World Congress on Genetics Applied to Livestock Production. Leipzig, German (German Society for Animal Science), pp. 1-4.
Van Ommen B. and Stierum R. 2002. Nutrigenomics: exploiting systems biology in the nutrition and health arena. Current Opinion in Biotechnology, 13(5): 517-521.
Walz A., Burgener R., Car B., Baggiolini M., Kunkel S. L. and Strieter R. M. 1991. Nucleotide structure and neutrophil-activating properties of a novel inflammatory peptide (ENA-78) with homology to interleukin 8. Journal of Experimental Medicine, 174: 1355-1362.
Weber A., Weber A. T., McDonald T. L., Marilynn A. and Larson M. A. 2006. Staphylococcus aureus lipotechoic acid induces differential expression of bovine serum amyloid A3 (SAA3) by mammary epithelial cells: Implications for early diagnosis of mastitis. Veterinary Immunology and Immunopathology, 109: 79-83.
Wilkinson J. M., Dyck M. K., Dixon W. T., Foxcroft G. R., Dhakal S. and Harding, J. C. 2012. Transcriptomic analysis identifies candidate genes and functional networks controlling the response of porcine peripheral blood mononuclear cells to mitogenic stimulation. Journal of Animal Science, 90(10): 3337-3352.
Xu G., Li Y., Yang J., Zhou X., Yin X., Liu M. and Zhao D. 2007. Effect of recombinant Mce4A protein of Mycobacterium bovis on expression of TNF-alpha, iNOS IL-6, and IL-12 in bovine alveolar macrophages. Molecular Cell Biochemistry, 302: 1-7.
Zhou L., Azfer A., Niu J., Graham S., Choudhury M., Adamski F. M., Youn C., Binkley P. F. and Kolattukudy P. E. 2006. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circulation Research, 98(9): 1177-1185.
Zlatnik A. and Yoshie O. 2000. Chemokines: A new classification system and their role in immunity. Immunity, 12: 121-127.