برآورد پارامترها و روند ژنتیکی صفات رشد گوسفند لری بختیاری با مدل های معادلات ساختاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی ژنتیک و اصلاح نژاد، گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 دانشیار گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 استادیار گروه علوم دام و طیور، پردیس ابوریحان دانشگاه تهران

4 استادیار گروه علوم دامی، دانشکده کشاورزی، دانشگاه جیرفت

5 استاد گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

برای تجزیه ژنتیکی صفات رشد گوسفند لری بختیاری با مدل‌های معادلات ساختاری و مدل­های چند متغیره استاندارد از داده­های فنوتیپی و شجره­ای جمع­آوری شده طی سال­های 1390-1374 در ایستگاه اصلاح نژاد گوسفند لری بختیاری استفاده شد. صفات مورد بررسی شامل وزن تولد، میانگین افزایش وزن روزانه از تولد تا شیرگیری، وزن شیرگیری، میانگین افزایش وزن روزانه از شیرگیری تا شش ماهگی و وزن شش ماهگی بودند. سه مدل مختلف شامل مدل چند متغیره استاندارد، مدل یک­طرفه بر اساس توالی زمانی و مدل یک­طرفه کامل در نظر گرفته شد. بر مبنای معیار اطلاعات انحراف (DIC)، مدل یک­طرفه بر اساس توالی زمانی دارای بالاترین مطلوبیت بود. در مدل یک­طرفه بر اساس توالی زمانی، ضرایب ساختاری بین وزن تولد و میانگین افزایش وزن روزانه از تولد تا شیرگیری، میانگین افزایش وزن روزانه از تولد تا شیرگیری و وزن شیرگیری، وزن شیرگیری و میانگین افزایش وزن روزانه از شیرگیری تا شش ماهگی و میانگین افزایش وزن روزانه از شیرگیری و شش ماهگی به ­ترتیب 343/9، 03/0، 632/10 و 14/0 بدست آمدند. وراثت­پذیری مستقیم صفات در مدل­های استاندارد و یک­طرفه بر اساس توالی زمانی به ترتیب 32/0-29/0، 2/0-22/0، 17/0-18/0، 11/0-11/0 و 16/0-16/0 برآورد شدند. روند ژنتیکی در مدل­های استاندارد و یک­طرفه بر اساس توالی زمانی نیز برای صفات مورد بررسی به ترتیب 6-23، 7/0- 3، 69- 129، 4/0-2/1 و 110-187 گرم در سال برآورد شدند که معنی­دار بودند. تجزیه ژنتیکی صفات رشد ضرورت قرار دادن روابط علّی بین صفات به منظور توسعه موثر اصلاح نژاد گوسفند لری بختیاری را نشان می­دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of genetic parameters and genetic trends for growth traits in Lori Bakhtiari sheep using structural equation models

نویسندگان [English]

  • H. Amou posht-e masari 1
  • S. H. Hafezian 2
  • R. Abdollahi-Arpanahi 3
  • M. Sattaei Mokhtari 4
  • Gh. Rahimi Mianji 5
1 Ph.D student of Genetic and Animal Breeding, Department of Animal Science, Faculty of Animal Science and Fisheries, Sari Agricultural Science and Natural Resources University, Sari, Iran
2 Associate Professor of Animal Science Department, Faculty of Animal Science and Fisheries, Sari Agricultural Science and Natural Resources University, Sari, Iran
3 Assistant Professor of Animal and Poultry Science Department, Abureyhan Campus, University of Tehran, Pakdasht, Iran
4 Assistant Professor of Animal Science Department, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
5 Professor of Animal Science Department, Faculty of Animal Science and Fisheries, Sari Agricultural Science and Natural Resources University, Sari, Iran
چکیده [English]

In order to estimate genetic parameters and genetic trends of growth traits in Lori Bakhtiari sheep using structural equation models and standard multivariate models, pedigree and phenotypic data which were collected from 1994 to 2011 in Lori Bakhtiari sheep breeding station were used. The studied growth traits included birth weight (BW), average daily gain from birth to weaning (ADG1), weaning weight (WW), average daily gain from weaning to six-month weight (ADG2) and six-month weight (6MW). Three different models including standard multivariate model (SMM), multivariate temporal recursive model (TRM) and multivariate fully recursive model (FRM) were considered. Based on DIC values, TRM had the highest plausibility. Under TRM, structural coefficients between BW-ADG1, ADG1-WW, WW-ADG2 and ADG2-6MW were estimated to be 9.343, 0.03, 10.632 and 0.14, respectively. Direct heritability estimates for mentioned traits were 0.32-0.29, 0.2-0.22, 0.17-0.18, 0.11-0.11 and 0.16-0.16, respectively. The estimated values for genetic trends under SMM and TRM were 6-23, 0.7-3, 69-129, 0.4-1.2 and 110-187 grams per year for BW, ADG1, WW, ADG2 and 6MW, respectively. The results of genetic analyses of growth traits indicated the necessity of considering causal relationships between the studied traits for developing efficient breeding program in Lori Bakhtiari sheep.

کلیدواژه‌ها [English]

  • Genetic trend
  • Growth traits
  • Lori-Bakhtiari sheep
  • Structural equation models
سرگلزایی م. و ادریس م. ع. 1383. تخمین روندهای فنوتیپی، ژنتیکی و محیطی برخی از صفات مربوط به رشد در گوسفند بختیاری. علوم آب و خاک، 8: 134-125.
عمو پشت مساری ح.، شادپرور ع.، غلامی نیا ع. ح. و هادی تواتری م. ح. 1394. برآورد مولفه­های (کو)واریانس و پارامترهای ژنتیکی صفات رشد پیش از شیرگیری در گوسفندان نژاد شال. پژوهش های علوم دامی، 25: 42-33.
Abbasi M. A., Abdollahi-Arpanahi R., Maghsoudi A., Vaez Torshizi A. and Nejati-Javaremi A. 2012. Evaluation of models for estimation of genetic parameters and maternal effects for early growth traits of Iranian Baluchi sheep. Small Ruminant Research, 104: 62-69.
Bahreini Behzadi M. R., Shahroudi F. E. and Van Vleck L. D. 2007. Estimation of genetic parameters for growth traits in Kermani sheep. Journal of Animal Breeding and Genetics, 124: 296-301.
Boujenane I., Chikhi A., Ibnelbachyr M. and Mouh F. Z. 2015. Estimation of genetic parameters and maternal effects for body weight at different ages in D’man sheep. Small Ruminant Research, 130: 27-35.
Boujenane I. and Diallo I. T. 2017. Estimation of genetic parameters and genetic trends for pre-weaning growth traits in Sardi sheep. Small Ruminant Research, 146: 61-68.
Bouwman A. C., Valente B. D., Janss L. L. G., Bovenhuis H. and Rosa G. J. M. 2014. Exploring causal networks of bovine milk fatty acids in a multivariate mixed model context. Genetic Selection Evolution, 46, 2. 
Gayawan E. and Ipinyomi R. A. 2009. A comparison of Akaike, Schwarz and R square criteria for model selection using some fertility models. Australian Journal of Basic and Applied Science, 3: 3524-3530.
Gianola D. and Sorensen D. 2004. Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes. Genetics, 167: 1407-1424.
Hanford K. J., Van Vleck L. D. and Snowder G. D. 2005. Estimates of genetic parameters and genetic change for reproduction, weight and wool characteristics of Rambouillet sheep. Small Ruminant Research, 57: 175-186.
Jafaroghli M., Rashidi R., Mokhtari M. S. and Shadparvar A. A. 2010. (Co)variancs components and genetic parameter estimates for growth traits in Moghani sheep. Small Ruminant Research, 91: 170-177.
Konig S., Wu X. L., Gianola D., Heringstad B. and Simianer H. 2008. Exploration of relationships between claw disorders and milk yield in Holstein cows via recursive linear and threshold models. Journal of Dairy Science, 91: 395–406.
Kosgey I. S., Baker R. L., Udo H. M. J. and Van Arendonk J. A. M. 2006. Success and failures of small ruminant breeding programmes in the tropics: a review. Small Ruminant Research, 61: 13-28.
Lopez de Maturana E., Legarra A., Varona L. and Ugarte E. 2007. Analysis of fertility and dystocia in Holsteins using recursive models to handle censored and categorical data. Journal of Dairy Science, 90: 2012-2024.
Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T. and Lee D. 2002. BLUPF90 and related programs (BGF90). Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France.
Mohammadi K. and Abdollahi-Arpanahi R. 2014. Genetic, phenotypic and environmental trends for growth and reproductive traits in Zandi sheep. Global Journal of Animal Scientific Research, 3: 311-320.
Mokhtari M. S. and Rashidi A. 2010. Genetic trends estimation for body weights of Kermani sheep at different ages using multivariate animal models. Small Ruminant Research, 88: 23-26.
Rosa G. J. M., Valente B. D.,  de los Campos G.,  Wu X. L., Gianola D. and Silva M. A. 2011. Inferring causal phenotype networks using structural equation models. Genetics Selection Evolution, 43: 6.
SAS Institute. 2003. SAS User's guide, Version 9.1. SAS Institute, Inc. Cary, NC.
Shaat I., Galal S. and Mansour H. 2004.Genetic trends for lamb weights in flocks of Egyptian Rahmani and Ossimi sheep. Small Ruminant Research, 51: 23-28.
Shrestha J. N. B., Peters H. F., Heaney D. P. and Van Vleck L. D. 1996. Genetic trends over 20 years of selection in the three synthetic Arcoots, Suffolk and Finnish Landrace sheep breeds. 1. Early growth traits. Canadian Journal of Animal Science, 79: 23-34.
Valente B. D., Rosa G. J. M., de los Campos G., Gianola D. and Silva M. A. 2010. Searching for recursive causal structures in multivariate quantitative genetics mixed models. Genetics, 185: 633-644.
Wu X-L., Heringstad B. and Gianola D. 2010. Bayesian structural equation models for inferring relationships between phenotypes: a review of methodology, identifiability, and applications. Journal of Animal Breeding and Genetics, 127: 3-15.