پروفایل ترانسکریپتومی اندومتریوم برای رشد و طویل‌شدگی رویان گاوهای شیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

2 استاد، گروه علوم دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

چکیده

در تحقیق حاضر، به‌ منظور شناسایی ژن‌های درگیر در طویل‌شدگی رویان گاوهای شیری، شناسایی آثار متقابل بین ژنی و واکاوی ماژول­های مهم و عملکردی در طول این فرآیند از داده‌های ترانسکریپتومی استفاده شد. رشد، تکوین موفقیت‌آمیز رویان و زنده‌مانی آن یکی از مهم‌ترین نیازهای اساسی در صنعت گاو شیری است. بخش بزرگی از آبستنی‌های از دست رفته در طول هفته‌های اولیه و به ‌ویژه در گام طویل‌شدگی رویان اتفاق می‌افتد. بدین ‌ترتیب برای درک بهتر اساس مولکولی این فرآیند، پروفایل یاخته‌ای اندومتریوم رحمی گاوهای آبستن در طول رشد و مرحله طویل‌شدگی رویان در مقایسه با گاوهای غیرآبستن بررسی شد. بعد از پردازش و تجزیه داده‌های ریزآرایه و RNA-Seq و ترکیب نتایج حاصل، آثار متقابل بین ژنی با استفاده از روش داده‌کاوی مورد بررسی قرار گرفت. در نهایت با مقایسه پروفایل اندومتریوم و بازسازی شبکه و جستجوی ماژول‌های مهم، شمار چهار ماژول عملکردی معنی‌دار شناسایی شد. مهم‌ترین ژن‌های موجود شامل ANKRD54، ADAMDEC1، PTN، MT1A، LIMS2، MT1E، CPA3 وMTPN  بودند. بر اساس این تحقیق توصیه می‌شود ماژول‌های شناسایی شده می‌توانند نشانگرهای مناسبی برای رشد، طویل‌شدگی، تکوین، ترشح مایع مجرای رحمی، پاسخ ایمنی و زنده‌مانی رویان باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Transcriptome profile of endometrium for growth and elongation of dairy cattle embryo

نویسندگان [English]

  • J. Jamdar Zonuzagh 1
  • M. Moradi Shahrbabak 2
  • A. Nejati-Javaremi 2
1 Ph.D Student, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Professor, Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

In this study, transcriptome data were used to identify the genes involved in embryo elongation of dairy cattle and the inter-gene interactions to evaluate the important functional modules during this process. The growth, successful development, and survival of the embryo are the most important needs of the dairy industry. The majority of pregnancy loss occurs during the first weeks, especially at the embryonic elongation stage. Thus,in order to better understanding of the molecular basis of this process, we undertook the transcriptome profiling of endometrial cells of pregnant versus non-pregnant cows, during this period. After preprocessing and analysis of microarray and RNA-Seq data and combining the results, gene interactions were investigated using data mining approach. Finally, by comparison of the endometrial profiles, reconstruction of the network and search for important modules, we found four significant functional modules. The most important genes contained ANKRD54, ADAMDEC1, PTN, MT1A, LIMS2, MT1E, CPA3 and MTPN. According to this study, we suggest that identified modules can be used as markers for embryonic growth, elongation, development, secretion of uterine luminal fluid, immune response and embryo survival.  

کلیدواژه‌ها [English]

  • Blastocyst
  • Gene network
  • Pregnant cow
  • Module
Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data.‏ Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Barabási A. L. and Bonabeau E. 2003. Scale-free networks. Scientific American, 288(5): 60-69.‏
Baran N., Kelly P. A. and Binart N. 2003. Decysin, a new member of the metalloproteinase family, is regulated by prolactin and steroids during mouse pregnancy. Biology of Reproduction, 68(5): 1787-1792.‏
Barrett T., Troup D. B., Wilhite S. E., Ledoux P., Rudnev D., Evangelista C., Kim I. F., Soboleva A., Tomashevsky M. and  Edgar R. 2006. NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Research, 35(suppl. 1): D760-D765.‏
Bauersachs S., Ulbrich S. E., Gross K., Schmidt S. E., Meyer H. H., Wenigerkind H., Vermehren M., Sinowatz F., Blum H. and Wolf E. 2006. Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction, 132(2): 319-331.‏
Bauersachs S., Ulbrich S. E., Reichenbach H. D., Reichenbach M., Büttner M., Meyer H. H., Spencer T. E., Minten M., Sax G., Winter G. and Wolf E. 2012. Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium. Biology of Reproduction, 86(2): 46.‏
Bazer F. W. 1975. Uterine protein secretions: Relationship to development of the conceptus 1. Journal of Animal Science, 41(5), 1376-1382.‏
Betteridge K. J. and Fléchon J. E. 1988. The anatomy and physiology of pre-attachment bovine embryos. Theriogenology, 29(1): 155-187.‏
Binelli M., Scolari S. C., Pugliesi G., Van Hoeck V., Gonella-Diaza A. M., Andrade S. C., Gasparin G. R. and Coutinho L. L. 2015. The transcriptome signature of the receptive bovine uterus determined at early gestation. PloS One, 10(4): e0122874.‏
Boivin J., Bunting L., Collins J. A. and Nygren K. G. 2007. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Human Reproduction, 22(6): 1506-1512.‏
Bolger A. M., Lohse M. and Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, 30(15): 2114-2120.
Braun A., Bordoy R., Stanchi F., Moser M., ünter Kostka G., Ehler E., Brandau O. and Fässler R. 2003. PINCH2 is a new five LIM domain protein, homologous to PINCHand localized to focal adhesions. Experimental Cell Research, 284(2): 237-248.‏
Brazma A., Parkinso H., Sarkans U., Shojatalab M., Vilo J., Abeygunawardena N., Holloway E., Kapushesky M., Kemmeren P., Lara G. G., Oezcimen A., Rocca-Serra P. and Sansone S. A. 2003. ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Research, 31(1): 68-71.‏
Dean M., Hamon Y. and Chimini G. 2001. The human ATP-binding cassette (ABC) transporter superfamily. Journal of Lipid Research, 42(7): 1007-1017.‏
Del Carratore F., Jankevics A., Eisinga R., Heskes T., Hong F. and Breitling R. 2017. RankProd 2.0: a refactored bioconductor package for detecting differentially expressed features in molecular profiling datasets. Bioinformatics, 33(17): 2774-2775.‏
Diskin M. G. and Morris D. G. 2008. Embryonic and early foetal losses in cattle and other ruminants. Reproduction in Domestic Animals, 43: 260-267.‏
Diskin M. G., Murphy J. J. and Sreenan J. M. 2006. Embryo survival in dairy cows managed under pastoral conditions. Animal Reproduction Science, 96(3-4): 297-311.‏
Duncan W. C., Shaw J. L., Burgess S., McDonald S. E., Critchley H. O. and Horne A. W. 2011. Ectopic pregnancy as a model to identify endometrial genes and signaling pathways important in decidualization and regulated by local trophoblast. PLoS One, 6(8): e23595.‏
Edgar R., Domrachev M. and Lash A. E. 2002. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1): 207-210.‏
Enquobahrie D. A., Williams M. A., Qiu C., Muhie S. Y., Slentz-Kesler K., Ge Z. and Sorenson T. 2009. Early pregnancy peripheral blood gene expression and risk of preterm delivery: a nested case control study. BMC Pregnancy and Childbirth, 9(1): 56.
Forde N., Spencer T. E., Bazer F. W., Song G., Roche J. F. and Lonergan P. 2009. Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium. Physiological Genomics, 41(1): 53-62.‏ ‏
Forde N., Beltman M. E., Duffy G. B., Duffy P., Mehta J. P., O'gaora P., Roche J. F., Lonergan P. and Crowe M. A. 2011. Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biology of Reproduction, 84(2): 266-278.‏
Forde N., Duffy G. B., McGettigan P. A., Browne J. A., Mehta J. P., Kelly A. K., Mansouri-Attia N., Sandra O., Loftus B. J., Crowe M. A., Fair T., Roche J. F., Lonergan P. and Evans A. C. O. 2012. Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau. Physiological Genomics, 44(16): 799-810.‏
Garrett J. E., Geisert R. D., Zavy M. T. and Morgan G. L. 1988. Evidence for maternal regulation of early conceptus growth and development in beef cattle. Journal of Reproduction and Fertility, 84(2): 437-446.‏
Geisert R. D., Brookbank J. W., Michael Roberts R. and Bazer F. W. 1982. Establishment of pregnancy in the pig: II. Cellular remodeling of the porcine blastocyst during elongation on day 12 of pregnancy. Biology of Reproduction, 27(4): 941-955.‏
Gray C. A., Taylor K. M., Ramsey W. S., Hill J. R., Bazer F. W., Bartol F. F. and Spencer T. E. 2001. Endometrial glands are required for preimplantation conceptus elongation and survival. Biology of Reproduction, 64(6): 1608-1613.‏
Guillomot M. 1995. Cellular interactions during implantation in domestic ruminants. Journal of Reproduction and Fertility, 49: 39-51.‏
Hafez E. S. E. and Hafez B. 2013. Reproduction in farm animals. John Wiley & Sons.‏
Hue I., Degrelle S. A. and Turenne N. 2012. Conceptus elongation in cattle: genes, models and questions. Animal Reproduction Science, 134(1-2): 19-28.
Ishiwata H., Katsuma S., Kizaki K., Patel O. V., Nakano H., Takahashi T., Imai K., Hirasawa A., Shiojima S., Ikawa H., Suzuki Y., Tsujimoto G., Izaike Y., Todoroki J. and Hashizume K. 2003. Characterization of gene expression profiles in early bovine pregnancy using a custom cDNA microarray. Molecular Reproduction and Development, 65(1): 9-18.‏
Jensen L. J., Kuhn M., Stark M., Chaffron S., Creevey C., Muller J., Doerks T., Julien P., Roth A., Simonovic M., Bork P. and von Mering C. 2008. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37(suppl. 1): D412-D416.‏
Kim D., Langmead B. and Salzberg S. L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357.
Langat D. L., Wheaton D. A., Platt J. S., Sifers T. and Hunt J. S. 2008. Signaling pathways for B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) in human placenta. The American Journal of Pathology, 172(5): 1303-1311.‏
Lonergan P. 2011. Influence of progesterone on oocyte quality and embryo development in cows. Theriogenology, 76(9): 1594-1601.‏
MacIntyre D. M., Lim H. C., Ryan K., Kimmins S., Small J. A. and MacLaren L. A. 2002. Implantation-associated changes in bovine uterine expression of integrins and extracellular matrix. Biology of Reproduction, 66(5): 1430-1436.‏
Mann G. E., Fray M. D. and Lamming G. E. 2006. Effects of time of progesterone supplementation on embryo development and interferon-τ production in the cow. The Veterinary Journal, 171(3): 500-503.‏
Mittal A., Pachter L., Nelson J. L., Kjærgaard H., Smed M. K., Gildengorin V. L., Zoffmann V., Hetland M. L., Jewell N. P., Olsen J. and Jawaheer D. 2015. Pregnancy-induced changes in systemic gene expression among healthy women and women with rheumatoid arthritis. PloS One, 10(12): e0145204.‏
Mondal S. and Prakash B. S. 2002. Comparison of luteal function between cows and buffaloes during estrous cycle. Indian Journal of Dairy Science, 55(3): 142-144.‏
Montojo J., Zuberi K., Rodriguez H., Bader G. D. and Morris Q. 2014. GeneMANIA: Fast gene network construction and function prediction for Cytoscape. F1000Research, 3: 153.‏
Morris D. G., Grealy M., Leese H. J., Diskin M. G. and Sreenan J. M. 2001. Cattle embryo growth, development and viability, Teagasc.‏
Nepusz T., Yu H. and Paccanaro A. 2012. Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods, 9(5): 471.‏
Nyman S., Gustafsson H. and Berglund B. 2018. Extent and pattern of pregnancy losses and progesterone levels during gestation in Swedish Red and Swedish Holstein dairy cows. Acta Veterinaria Scandinavica, 60(1): 68.‏
Pertea M., Pertea G. M., Antonescu C. M., Chang T. C., Mendell J. T. and Salzberg S. L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3): 290
Piehler A., Kaminski W. E., Wenzel J. J., Langmann T. and Schmitz G. 2002. Molecular structure of a novel cholesterol-responsive A subclass ABC transporter, ABCA9. Biochemical and Biophysical Research Communications, 295(2): 408-416.‏
Ribeiro E. S., Galvão K. N., Thatcher W. W. and Santos J. E. P. 2012. Economic aspects of applying reproductive technologies to dairy herds. Animal Reproduction, 9(3): 370-387.‏
Ritchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W. and Smyth G. K. 2015. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7): e47-e47.
Rodriguez-Martinez H., Hultgren J., Båge R., Bergqvist A. S., Svensson C., Bergsten C., Lidfors L., Gunnarsson S., Algers B., Emanuelson U., Berglund B., Andersson G., Håård M., Lindhé B., Stålhammar H. and Gustafsson H 2008. Reproductive performance in high-producing dairy cows: can we sustain it under current practice. IVIS Reviews in Veterinary Medicine, 1(108): 1-23.‏
Schulte A. M. and Wellstein A. 1997. Pleiotrophin and related molecules. Bicknell R Lewis CE Ferrara N (Eds). Tumor Angiogenesis. Oxford University Press, Oxford, pp. 273-289.‏
Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., Amin N., Schwikowski B. and Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498-2504.
Spencer T. E., Sandra O. and Wolf E. 2008. Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction, 135(2): 165-179.
Spencer T. E. and Hansen T. R. 2015. Implantation and establishment of pregnancy in ruminants. In: Regulation of implantation and establishment of pregnancy in mammals (pp. 105-135). Springer.‏
Sponchiado M., Gonella-Diaza A. M., Rocha C. C., Turco E. G. L., Pugliesi G., Leroy J. L. and Binelli M. 2019. The pre-hatching bovine embryo transforms the uterine luminal metabolite composition in vivo. Scientific Reports, 9(1): 8354.
Thirumoorthy N., Kumar K. M., Sundar A. S., Panayappan L. and Chatterjee M. 2007. Metallothionein: an overview. World Journal of Gastroenterology, 13(7): 993.
Wang R., Sens D. A., Garrett S., Somji S., Sens M. A. and Lu X. 2007. The resistance of metallothionein to proteolytic digestion: An LC-MS/MS analysis. Electrophoresis, 28(16): 2942-2952.