ارزش غذایی، ترکیبات فنلی و فراسنجه های هضم برون تنی ضایعات برداشت زرشک در مقایسه با یونجه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکتری تغذیه دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند

2 استاد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند

چکیده

رقابت خوراک دام با غذای انسان یکی از چالش­های اصلی در پایداری سیستم­های تولید دامی است و از این منظر، شناسایی و تعیین ارزش غذایی ضایعات کشاورزی به عنوان جایگزین در تغذیه دام، اهمیّت دارد. پژوهش حاضر به منظور تعیین ارزش غذایی، ترکیبات فنلی و فراسنجه­های هضم برون­تنی ضایعات مختلف گیاه زرشک انجام شد. تیمارهای آزمایشی شامل: (1) یونجه خشک، (2) شاخه زرشک، (3) برگ قبل از برداشت میوه، (4) برگ پس از برداشت میوه و (5) مخلوط شاخه و برگ (به نسبت 60 به 40) بود. نمونه­های ضایعات حاصل از برداشت محصول زرشک، به صورت دستی تهیه شده و در معرض آفتاب خشک شد. ترکیب شیمیایی و ترکیبات فنلی نمونه­ها پس از آسیاب شدن، بر اساس روش­های استاندارد آزمایشگاهی تعیین شده و مقدار گاز تولیدی در زمان­های 2، 4، 8، 16، 24، 48، 72 و 96 ساعت ثبت شد. نتایج مشخص کرد میزان ماده خشک، ماده آلی و خاکستر در بین تیمارهای آزمایشی یکسان است. بالاترین میزان پروتئین خام ضایعات حاصل از برداشت زرشک در برگ مشاهده شد، همچنین بخش عمده تانن موجود در ضایعات زرشک از نوع قابل هیدرولیز بود. گرچه ثابت نرخ تولید گاز (c) در بین تیمارها یکسان بود، اما بیشترین پتانسیل تولید گاز (b) در برگ زرشک مشاهده شد (05/0>p ). بازدهی تخمیر خوراک، قابلیت هضم ماده آلی، انرژی قابل سوخت و ساز و انرژی خالص شیردهی نیز در برگ زرشک بالاتر از یونجه خشک بود (05/0>p ). به طور کلی نتایج این آزمایش نشان داد ضایعات حاصل از برداشت زرشک (به جز شاخه) ارزش غذایی قابل قبولی داشته و با توجه حجم زیاد آن در استان خراسان جنوبی، امکان تهیه در مقیاس صنعتی و هزینه کمتر از یونجه، می­توان با تحقیقات بیشتر از آن به عنوان جایگزین بخشی از علوفه­های مرسوم نظیر یونجه خشک در جیره نشخوارکنندگان استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nutritive value, phenolic compounds and in vitro digestion parameters of barberry (Berberis vulgaris) harvest residues in comparison with alfalfa hay

نویسندگان [English]

  • N. Ghavipanjeh 1
  • M. H. Fathi Nasri 2
1 Ph.D Student of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
2 Professor, Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
چکیده [English]

Food- feed competition is one of the main challenges in the sustainability of livestock production systems. From this point of view, it is important to identify the nutritional value of agricultural waste as an alternative for animal feeding. The current study was carried out to evaluate nutritive value, phenolic compounds and in vitro digestion characteristics of different parts of Berberis Vulgaris plant. The experimental treatments included: 1) alfalfa hay, 2) barberry branches, 3) leaves before barberry harvesting, 4) leaves after barberry harvesting and 5) a mixture of branches and leaves (in the ratio of 60:40). The samples of barberry harvest wastages were manually prepared and sun-dried. The chemical compositions and phenolic compounds of samples were determined according to standard laboratory methods after milling samples and gas production of samples was assessed at zero, 2, 4, 8, 12, 16, 24, 48, 72 and 96 hr. The results revealed that dry matter, organic matter and ash content were similar among treatments. The highest crude protein was observed in barberry leaf; also the main tannins in barberry wastes were hydrolysable. Gas production rate (c) was the same among treatments; however, the highest gas production potential (b) was observed in leaf (p < /em><0.05). Feed fermentation efficiency, organic matter digestibility, metabolizable energy and net lactation energy were also higher in barberry leaf than alfalfa hay (p < /em><0.05). In conclusion, barberry harvest residues (except branches) has acceptable nutritional value and due to its large volume in South Khorasan province, the possibility of industrial scale preparation and lower cost than alfalfa, can be used as a replacement for current forage like alfalfa in ruminant nutrition.

کلیدواژه‌ها [English]

  • Gas production
  • Berberis vulgaris
  • Agricultural by-products
  • In vitro digestion
باشتنی م.، تهرانی م. ر.، ناصریان ع .، فتحی م. ح.، و گنجی ف. 1391. ترکیب شیمیایی و ارزش غذایی برگ درخت عناب با استفاده از روش­های برون تنی. تحقیقات دام و طیور، 1(3): 1-8.
بی نام، 1396. آمارنامه­های کشاورزی، وزارت جهاد کشاورزی. دفتر فناوری و اطلاعات، تهران، ایران.
خسروی ف.، فتحی نسری م. ح.، فرهنگ­فر ه.، مدرسی ج. 1393. اثر پرتوتابی الکترونی بر غلظت ترکیبات فنلی و فراسنجه­های تجزیه پذیری شکمبه­ای تفاله دانه انار. پژوهش­های علوم دامی، 24(2): 33-44.
رحیمی ع.، ناصریان ع.، ابراهیمی س. ه.، و زرنگار ش. 1395. تعیین ارزش غذایی اجزاء مختلف باقلا و پوسته مرکبات با استفاده از تکنیک تولید گاز در شرایط برون تنی. هفتمین کنگره علوم دامی ایران، تهران، شهریور 1396.
عمویی ع.، مجاهد م.، و مجاهد م. 1396. بسته کارآفرینی کاشت زرشک به روش دیم در اراضی شیب­دار. موسسه آموزش عالی علمی-کاربردی جهاد کشاورزی. صص. 58-70.
فلاحی ج.، رضوانی مقدم پ.، و نصیری محلاتی م. 1389. اثر تاریخ برداشت بر شاخص­های کمی و کیفی میوه زرشک بی دانه. پژوهش­های زراعی ایران، 8(2): 225-234.
کافی م.، بالندری ا.، راشد محصل م. ح.، کرباسی ع.، مرعشی ح.، و مسکوکی ع. 1381. زرشک: فناوری تولید و فرآوری. مؤسسه­ زبان و ادب.
مختار پور آ.، ناصریان ع.، و پور ملائی ف. 1391. تعیین ترکیب شیمیایی و فنلی و تولید گاز در شرایط آزمایشگاه برگ­های برخی از گیاهان حاوی تانن. پنجمین کنگره علوم دامی ایران، صص. 259-264.
مدرسی ج.، ولی زاده ر.، دانش مسگران م.، فتحی نسری م. ح.، و خسروی ف. 1393. تعیین ارزش غذایی شاخ و برگ حاصل از برداشت زرشک و تأثیر ترکیبات ضد تانن بر ترکیبات فنلی آن. ششمین کنگره علوم دامی ایران، دانشگاه تبریز.
مدرسی ج.، ولی زاده ر.، فتحی نسری م.ح.، هروی موسوی ع.، دانش مسگران م.، و خسروی ف. 1395. تعیین ارزش غذایی، ترکیبات فنلی و فراسنجه های هضم برون تنی شاخ و برگ حاصل از برداشت زرشک. پژوهش­های علوم دامی ایران، 8(2): 237-227.
مقدم م.، تقی زاده ا.، نوبخت ع.، و احمدی ا. 1390. ارزش غذایی تفاله انگور و برگ مو کشمشی با استفاده از روش­های کیسه­های نایلونی و تولیدگاز. پژوهش های علوم دامی، 3: 435-443.
Achakzai A. K. K., Achakzai P., Masood A., Kayani S. A. and Tareen R. B. 2009. Response of plant parts and age on the distribution of secondary metabolites on plants found in Quetta. Pakistan Journal ofBotany, 41(5): 2129-2135.
Aderinboye  R. Y., Akinlolu  A. O., Adeleke M. A., Najeem G. O., Ojo V. O. A., Isah O. A. and Babayemi O. J. 2016. In vitro gas production and dry matter degradation of four browse leaves using cattle, sheep and goat inocula. Slovak Journal of Animal Science, 49(1): 32-43.
Alavi N. and Mazloumzadeh S. M. 2012. Effect of harvesting and drying methods ofseedless barberry on some fruit quality. Journal of the Saudi Society of Agricultural Sciences, 11: 51-55.
Alemardan A., Asadi W., Rezaei M., Tabrizi L. and Mohammadi S. 2013. Cultivation of Iranian seedless barberry (Berberis integerrima ‘Bidaneh’): A medicinal shrub. Industrial Crops and Products, 50: 276-287.
AOAC. 2015. Official Methods of Analysis, 18th edition. Official Methods of Analysis of AOACInternational, Arington, Virginina, USA.
Barman K., Deepak K., Tandon D. M., Thirumeignanam D.and Rai S. N. 2008. Tannins estimation. Dairy CattleNutrition Division, N.D.R.I., Karnal, India.
Barry T. N. and Duncan S. J. 1984. The role of condensed tannins in the nutritional value of Lotus  edunculatus for sheep. 1. Voluntary intake. British Journal of Nutrition, 51: 485-491.
Ben Salem H. and Smith T. 2008. Feeding strategies to increase small ruminant production in dry environments. Small Ruminant Research, 77: 174-194.
Bodas R., Prieto N., García-González R., Andrés S., Giráldez F. J. and López S. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, 176: 78-93.
Bueno I. C., Brandi R. A., Franzolin R., Benetel G., Fagundes G. M., Abdalla A. L. and Muir J. P. 2015. In vitro methane production and tolerance to condensed tannins in five ruminant species. Animal Feed Science and Technology, 205: 1-9.
Butler L. G. 1982. Relative degree of polymerisation of sorghum tannin during seed development and maturation. Journal of Agriculture and Food Chemistry, 30: 1090-1094.
Frutos P., Hervás G., Ramos G., Giráldez F. J. and Mantecón A. R. 2002. Condensed tannin content of several shrub species from a mountain area in northern Spain, and its relationship to various indicators of nutritive value. Animal Feed Science and Technology, 95: 215-226.
Getachew G., Makkar H. P. S. and Becker K. 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. Journal of Agricultural Science, 139: 341-352.
Gulsoy S., Ozkan G. and Ozkan K. 2011. Mineral elements, phenolics and organic acids of leaves and fruits from Berberis crataegina DC. Asian Journal of Chemistry, 23(7): 30-71.
Jahani-Azizabadi H., Danesh Mesgaran M., Vakili A. R.,  Rezayazdi K. and Hashemi M. 2011. Effect of various medicinal plant essential oils obtained from semi-arid climate on rumen fermentation characteristics of a high forage diet using in vitro batch culture. African Journal of Microbiology Research, 5: 4812-4819.
Jayanegara A., Goel G., Makkar H. P. S. and Becker K. 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Animal Feed Science and Technology, 209: 60-68.
Kardan Moghaddam V., Yousef  Elahi M., Fathi Nasri M. H., Elghandour M., Monroy J. C., Salem A. Z. M., Karimi M. and Mlambo V. 2019. Growth performance and carcass characteristics of finishing male lambs fed barberry pomace-containing diets. Animal Biotechnology, https://doi.org/10.1080/10495398.2019.1674861.
Khazaal K., Boza J. and Ørskov E. R. 1994. Assessment of phenolics-related anti-nutritive effects in Mediterranean browse: a comparison between the use of the in vitro gas production technique with or without insoluble polyvinylpolpyrrolidone. Animal Feed Science and Technology, 49: 133-149.
Makkar H. P. S. 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research, 49: 241-256.
Makkar H. P. S. 2018. Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal, 12(8): 1744-1754.
Makkar H. P. S., Becker K., Vercauteren J., Cheze C., Dumon M. C. and Weber J. F. 1996. A bioassay for polyphenols (tannins). Proceedings of Polyphenols Communications, 18: 197-198.
Martinez C. J., Sanchez H. H.,  Manilla G. A., Quintos N. R., Herrera J. M. and  Ortiz G. D. 2001. Effect of aqueous and alkaline thermal treatments on chemical composition and oligosaccharide, alkaloid and tannin contents of Lupinuscampestris seeds. Journal of the Science of Food and Agriculture, 81: 421-428.
Mekonnen M. M. and Hoekstra A. Y. 2012. A global assessment of the water footprint of farm animal products. Ecosystems, 15(3): 401-415.
Menke K. H. and Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Journal of Animal Research and Development, 28: 7-55.
Menke K. H., Raab L., Salewski A., Steingass H., Fritz D. and Shneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor. Journalof Agricultural Science, 97: 217-222.
Min B. R., Barry T. N., Attwood G. T. and McNabb W. C. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Animal Feed Science and Technology, 106: 3-19.
Minson D. J. 1987. Estimation of the nutritive value of forage, in temperate pastures, their production, use and management. Australian Wool Corporation.
Minson D. J. 1990. Forage in Ruminant Nutrition. Academic Press, USA, 483 p.
Mokhber Dezfuli N., Saeidnia S., Gohari A. R. and Kurepaz Mahmoodabadi M. 2014. Phytochemistry and pharmacology of berberis species. Pharmacognosy Reviews, 8(15): 8-15.
Muela C. R., Cano E. A., Salvador F., Ortega J. A, Villalobos C. and Arzola C. 2005. Effect of the urea concentration in protein supplement added to dry grass on the in vitro production of gas, volatile fatty acids and ammonia. Proc. Western Section, American Society of Animal Science, 56: 365-368.
Njidda A. A. and Nasiru A. 2010. In vitro gas production and dry matter digestibility of tannin-containing forages of semiarid region of north-eastern Nigeria. Pakistan Journal of Nutrition, 9: 60-66.
Orskov E. R., and McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, 92: 499-503.
Rezvani Moghaddam P., Fallahi J., Aghhavani Shajari M. and Nassiri Mahallati M. 2013.Effects of harvest date, harvest time, and post-harvest management on quantitative and qualitative traits in seedless barberry (Berberis vulgaris L.). Industrial Crops and Products, 42: 30-36.
Saminathan M., Sieo C. C., Gan H. M., Abdullah N., Wong C. M. V. L. and Ho Y. W. 2016. Effects of condensed tannin fractions of different molecular weights on population and diversity of bovine rumen methanogenic archaea in vitro, as determined by high-throughput sequencing. Animal Feed Science and Technology, 216: 146-160.
Statistical Analysis Systems Institute (SAS). 2002. SAS version 9.2. SAS Institute Inc., Cary. NC. USA.
Tiemann T. T., Lascano C. E., Wettstein H. R., Mayer A. C., Kreuzer M. and Hess H. D. 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal, 2: 790-799.
Tolera A., Khazaal K. and Orskov E. R. 1997. Nutritive evaluation of some browse species. Animal Feed Science and Technology, 67: 181-195.
Valentin S. F., Williams P. E. V., Forbes J. M. and Sauvant D. 1999. Comparison of the in vitro gas production technique and the nylon bag degradability technique to measure short and long term processes of degradation of maize silage in dairy cows. Animal Feed Science and Technology, 78: 81-99.
Van Soest P. J., Robertson J. B. and Lewis B. A.  1991. Methods for dietary neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
Vázquez E. G., Medina L. H., Benavides L. M., Caratachea A. J., Razo G. S., Burgos A. J. A. and Rodríguez R. O. 2016. Effect of fodder tree species with condensed tannin contents on in vitro methane production. Asian-Australasian Journal of Animal Sciences, 29(1): 73-79.
Zokov Končić M. Z., Kremer D., Karlović K. and Kosalec I. 2010. Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food and Chemical Toxicology, 48: 2176-2180.
Zu Ermgassen E. K. H. J., Phalan B., Green R. E. and Balmford A. 2016. Reducing the land use of EU pork production: where there’s s a will, there’s a way. Food Policy, 58: 35-48.