مقایسه روش‌های آماری مختلف در انتخاب ژنومی بر اساس معیار اثربخشی انتخاب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان

2 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان

3 استادیار، دانشکده علوم کشاورزی و محیط زیست، دانشگاه جورجیا آمریکا

4 استاد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان

5 دانشجوی دکتری، گروه علوم دامی، دانشکده کشاورزی، دانشگاه کردستان

چکیده

هدف از این پژوهش، مقایسه روش‌های مختلف ارزیابی ژنومی با استفاده از معیارهای همبستگی (ρ)، رگرسیون (β)، میانگین مربعات خطا (MSE) و اثربخشی انتخاب (SE) بود. به این منظور، نه سناریوی متفاوت بر اساس سطوح مختلف وراثت‌پذیری (1/0، 3/0 و 5/0) و تعداد متفاوت QTL (20،  200 و 1000) طراحی شد. برای شبیه‌سازی سناریوهای مختلف، پنج نسل با اندازه 1000 حیوان شبیه‌سازی شد، که دو نسل نخست به عنوان جمعیت مرجع و سه نسل بعدی به عنوان جمعیت تأیید در نظر گرفته شد. برای هر حیوان، ژنومی به طول 500 سانتی‌مورگان با تراکم نشانگری 10000 SNP متشکل از پنج کروموزوم شبیه‌سازی شد. پیش‌بینی ارزش‌های اصلاحی ژنومی با سه روش آماری GBLUP، Bayes A و Bayes B انجام شد. نتایج حاصل نشان داد با افزایش فاصله نسل از جمعیت مرجع، صحت ارزش‌های اصلاحی ژنومی برای هر سه روش آماری کاهش می‌یابد، هر چند روش‌های بیزی از نظر تداوم صحت، عملکرد بهتری داشتند. بر اساس معیارهای همبستگی، رگرسیون و اثربخشی انتخاب، با افزایش سطوح وراثت‌پذیری بهبود صحت مشاهده شد، اما معیار میانگین مربعات خطا روند معکوسی را نشان داد. در روش‌های بیزی، تعداد پایین QTL دارای عملکرد بهتری بودند، اما در تعداد بالای QTL، تفاوت روش‌های مختلف ارزیابی ژنومی به کمترین میزان رسید. نتایج اثربخشی انتخاب در مقایسه با صحت ارزش اصلاحی ژنومی نشان داد که صحت همیشه نمی‌تواند معیار مناسبی برای تعیین روش‌ برتر ارزیابی ژنومی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of different statistical methods in genomic selection based on selection effectiveness criteria

نویسندگان [English]

  • M. Tamaddoni-Arani 1
  • M. Razmkabir 2
  • R. Abdollahi-Arpanahi 3
  • A. Rashidi 4
  • Z. Moradi 5
1 Former MSc Student, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
2 Assistant Professor, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
3 Assistant Professor, College of Agricultural & Environmental Sciences, University of Georgia, Athens, USA
4 Professor, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
5 Ph.D. Student, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
چکیده [English]

This study aimed to compare different methods of genomic evaluation using the criteria of correlation (ρ), regression (β), mean square error (MSE), and selection effectiveness (SE). For this purpose, nine different scenarios were designed based on different levels of heritability (0.1, 0.3, and 0.5) and different numbers of QTLs (20, 200, and 1000). To simulate different scenarios, five generations with a size of 1000 animals were simulated, of which the first two generations were considered as the reference population and the next three generations as the validation population. For each animal, a genome of 500 centimorgans with a marker density of 10000 SNP consisting of five chromosomes was simulated. Genomic breeding values were predicted using three statistical methods: GBLUP, Bayes A, and Bayes B. The results showed that with increasing generation interval from the reference population, the accuracy of genomic breeding values decreased for three statistical methods, although Bayesian methods performed better in terms of continuity of accuracy. Based on the criteria of correlation, regression, and selection effectiveness, with increasing the levels of heritability, improved accuracy was observed, but the criterion of mean squares error showed the opposite trend. Bayesian methods performed better in low QTLs, but differences in different genomic evaluation methods were minimized in high QTLs. The results of selection effectiveness in comparison with the accuracy of genomic breeding value showed that accuracy can’t always be a suitable criterion for determining the superior method of genomic evaluation.

کلیدواژه‌ها [English]

  • Genomic breeding value
  • Ranking
  • Bayesian methods
  • Accuracy
  • Regression coefficient
عاطفی ع.، شادپرور ع. ا.، و قوی حسین زاده ن. 1400. صحت ارزیابی ژنومی با در نظر گرفتن اثر متقابل بین روش آماری برآورد آثار نشانگری، ساختار جمعیت و معماری ژنتیکی صفت. تحقیقات تولیدات دامی، 10(2): 1-10.
عبدالهی آرپناهی ر.، پاکدل ع.، نجاتی جوارمی ا.، و مرادی شهر بابک م. 1392. مقایسه روش های گوناگون ارزیابی ژنومیک در صفاتی با معماری ژنتیکی متفاوت. تولیدات دامی، 15(1): 65-77.
Atefi A., Shadparvar A. A. and Ghavi Hossein-Zadeh N. 2016. Comparison of whole genome prediction accuracy across generations using parametric and semi parametric methods. Acta Scientiarum. Animal Sciences, 38(4): 447-453.
Atefi A., Shadparvar A. A. and Ghavi Hossein-Zadeh N. 2018. Accuracy of genomic prediction under different genetic architectures and estimation methods.  Iranian Journal of Applied Animal Science, 8(1): 43-52.
Brito F. V., Neto J. B., Sargolzaei M., Cobuci J. A. and Schenkel F. S. 2011. Accuracy of genomic selection in simulated populations mimicking the extent of linkage disequilibrium in beef cattle. BMC Genetics, 12(1): 80-90.
Calus M. P. L., Goddard M. E., Wientjes Y. C. J., Bowman P. J. and Hayes B. J. 2018. Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection. Journal of Dairy Science, 101(5): 4279-4294.
Calus M. P. L., Meuwissen T. H. E., De Roos A. P. W. and Veerkamp R. F. 2008. Accuracy of genomic selection using different methods to define haplotypes. Genetics, 178(1): 553-561.
Clark S. A., Hickey J. M. and Van Der Werf J. H. 2011. Different models of genetic variation and their effect on genomic evaluation. Genetics Selection Evolution, 43(1): 1-9.
Daetwyler H. D., Calus M. P., Pong-Wong R., De los Campos G. and Hickey J. M. 2013. Genomic prediction in animals and plants: simulation of data, validation, reporting and benchmarking. Genetics, 193(2): 347-365.
Daetwyler H. D., Kemper K. E., Van Der Werf J. H. J. and Hayes B. J. 2012. Components of the accuracy of genomic prediction in a multi-breed sheep population. Journal of Animal Science, 90(10): 3375-3384.
Daetwyler H. D., Villanueva B., Bijma P. and Woolliams J. A. 2007. Inbreeding in genome-wide selection. Journal of Animal Breeding and Genetics, 124(6): 369-376.
De Los Campos G. and Perez-Rodriguez P. 2012. BGLR: Bayesian Generalized Linear Regression. R Package.
De Los Campos G., Hickey J. M., Pong-Wong R., Daetwyler H. D. and Calus M. P. 2013. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics, 193(2): 327-345.
Dekkers J. C. M. 2004. Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science, 82(13): 313-328.
Falconer D. S. and Mackay F. C. T. 1996. Introduction to Quantitative Genetics. Third edition. Longman Group. pp. 100-143.
Fernando R. L. and Grossman M. 1989. Marker assisted selection using best linear unbiased prediction. Genetics Selection Evolution, 21(4): 467-481.
Goddard M. 2009. Genomic selection: prediction of accuracy and maximization of long term response. Genetica, 136(2): 245-257.
Goddard M. E. and Hayes B. J. 2007. Genomic selection. Journal of Animal Breeding and Genetics, 124(6): 323-330.
Gowane G. R., Lee S. H., Clark S., Moghaddar N., Al-Mamun H. A. and Van Der Werf J. H. 2019. Effect of selection and selective genotyping for creation of reference on bias and accuracy of genomic prediction. Journal of Animal Breeding and Genetics, 136(5): 390-407.
Habier D., Fernando R. L. and Dekkers J. C. M. 2007. The impact of genetic relationship information on genome-assisted breeding values. Genetics, 177(4): 2389-2397.
Habier D., Tetens J., Seefried F. R., Lichtner P. and Thaller G. 2010. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genetics Selection Evolution, 42(1): 5-17.
Haley C. S. and Visscher P. M. 1998. Strategies to utilize marker-quantitative trait loci associations. Journal of Dairy Science, 81(2): 85-97.
Hayes B. J., Phillip J. B., Chamberlain A. C., Verbyla K. and Goddard M. E. 2009. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics Selection Evolution, 41(1): 1-9.
Hill W. G. and Robertson A. 1968. Linkage disequilibrium in finite populations. Theoretical and Applied Genetics, 38(6): 226-231.
Jimenez-Montero J. A., Gianola D., Weigel K., Alenda R. and Gonzalez-Recio O. 2013. Assets of imputation to ultra-high density for productive and functional traits. Journal of Dairy Science, 96(9): 6047-6058.
Lund M. S., Sahana G., De Koning D. J., Su G. and Carlborg Ö. 2009. Comparison of analyses of the QTLMAS XII common dataset. I: Genomic selection. BMC Proceedings, 3(1): 1-8.
Meuwissen T. H. 2003. Genomic selection: the future of marker assisted selection and animal breeding. In: MAS: a fast track to increase genetic gain in plants and animal breeding?, FAO, Session II: Marker assisted selection in animals, electronic forum on biotechnology in food and agriculture, 17–18 Oct. Turin, Italy, pp. 54-59.
Meuwissen T. H., Hayes B. J. and Goddard M. E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4): 1819-1829.
Muir W. M. 2007. Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. Journal of Animal Breeding and Genetics, 124(6): 342-355.
Nejati-Javaremi A., Smith C. and Gibson J. P. 1997. Effect of total allelic relationship on accuracy of evaluation and response to selection. Journal of Animal Science, 75(7): 1738-1745.
Neves H. H., Carvalheiro R., O’brien A. M. P., Utsunomiya Y. T., Do Carmo A. S., Schenkel F. S., Sölkner J., McEwan J. C., Van Tassell C. P., Cole J. B. and Da Silva M. V. 2014. Accuracy of genomic predictions in Bos indicus (Nellore) cattle. Genetics Selection Evolution, 46(1): 1-13.
Ornella L., Pérez P., Tapia E., González-Camacho J. M., Burgueño J., Zhang X., Singh S., Vicente F. S., Bonnett D., Dreisigacker S., Singh R., Long N. and Crossa J. 2014. Genomic-enabled prediction with classification algorithms. Heredity, 112(6): 616-626.
R Core Team. 2018. R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, V 3.5.1.
Saatchi M., Miraei-Ashtiani S. R., Nejati-Javaremi A., Moradi-Shahrbabak M. and Mehrabani-Yeghaneh H. 2010. The impact of information quantity and strength of relationship between training set and validation set on accuracy of genomic estimated breeding values. African Journal of Biotechnology, 9(4): 438-442.
Sargolzaei M. and Schenkel F. S. 2009. QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25(5): 680-681.
Schaeffer L. R. 2006. Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123(4): 218-223.
Solberg T. R., Sonesson A. K., Woolliams J. A. and Meuwissen T. H. E. 2008. Genomic selection using different marker types and densities. Journal of Animal Science, 86(10): 2447-2454.
VanRaden P. M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11): 4414-4423.
VanRaden P. M. and Sullivan P. G. 2010. International genomic evaluation methods for dairy cattle. Genetics Selection Evolution, 42(1): 1-7.
Vitezica Z. G., Aguilar I., Misztal I. and Legarra A. 2011. Bias in genomic predictions for populations under selection. Genetics Research, 93(5): 357-366.
Wientjes Y. C., Veerkamp R. F., Bijma P., Bovenhuis H., Schrooten C. and Calus M. P. 2015. Empirical and deterministic accuracies of across-population genomic prediction. Genetics Selection Evolution, 47(1): 1-14.
Zhang Z., Ding X. D., Liu J., De Koning D. J. and Zhang Q. 2011. Genomic selection for QTL-MAS data using a trait-specific relationship matrix. BMC Proceedings, 5(3): 1-4.