اثر هوازدگی علوفه قبل از سیلو کردن بر ترکیب شیمیایی، پایداری هوازی و جمعیت میکروبی قبل و پس از باز کردن سیلاژ ذرت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد تغذیه دام، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس

2 استادیار، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبد کاووس

3 استادیار، گروه کشاورزی، دانشگاه پیام نور، تهران، ایران

چکیده

هدف از انجام این مطالعه،  تعیین اثر نفوذ اکسیژن بر ترکیب شیمیایی و جمعیت میکروبی سیلاژ ذرت قبل و بعد از سیلو کردن علوفه کامل ذرت بود. تیمارهای آزمایشی بر اساس زمان هوازدگی پس از برداشت و قبل از پوشاندن سیلوهای آزمایشگاهی شامل: 1) سیلو کردن علوفه کامل ذرت بلافاصله پس از برداشت، 2) سیلو کردن علوفه کامل ذرت و عایق کردن آن، 24 ساعت پس از برداشت و 3) سیلو کردن علوفه کامل ذرت و عایق کردن آن، 64 ساعت پس از برداشت بودند. نتایج نشان داد تاخیر 24 ساعته در پوشاندن سیلوها فقط مقدار الیاف نامحلول در شوینده خنثی را به­طور معنی­داری افزایش داد، در حالی که تاخیر 72 ساعته تاثیر معنی­داری بر ماده خشک و پروتئین خام داشت (05/0<‌P). پس از باز کردن سیلو­ها، یک روز تاخیر در عایق کردن سیلوها سبب افزایش معنی­دار جمعیت مخمرها شد و پروتئین خام را به­طور معنی­داری کاهش داد (05/0<‌P). 72 ساعت تاخیر در پوشاندن سیلو، به­طور معنی­داری بر مقدار pH، پروتئین خام، مخمر و نیتروژن آمونیاکی اثر گذاشت و بازیابی ماده خشک را به­صورت قابل توجهی (1/93 در مقابل 4/89 درصد) کاهش داد (05/0<‌P). تاخیر 24 ساعته در پوشاندن سیلوها تاثیر معنی­داری بر پایداری هوازی سیلوها نداشت، در حالی که 72 ساعت تاخیر در پوشاندن سیلوها پایداری هوازی (25/75 در مقابل 5/53 ساعت) را کاهش داد­­ (05/0<‌P). جمعیت مخمرها بیشترین حساسیت را در بین فراسنجه­های اندازه­گیری شده داشتند. همچنین، 72 ساعت تاخیر در پوشاندن سیلو تاثیر قابل توجهی بر پایداری هوازی سیلاژ ذرت داشت. به­طور کلی، تاخیر در پوشاندن سیلو به مدت یک یا سه روز بر خصوصیات شیمیایی و میکروبی سیلاژ تاثیر منفی داشت. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of aerobic exposure to forage before ensiling on the chemical composition, aerobic stability, and microbial population of corn silage before and after silage opening

نویسندگان [English]

  • R. Toosi 1
  • J. BayatKouhsar 2
  • M. Vatandoost 3
  • F. Ghanbari 2
1 Former MSc Student of Animal Nutrition, Animal Science Department, Faculty of Agriculture Science and Natural Resources, Ganbad Kavous University, Gonbad, Iran
2 Assistant Professor, Animal Science Department, Faculty of Agriculture Science and Natural Resources, Ganbad Kavous University, Gonbad, Iran
3 Assistant Professor, Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
چکیده [English]

This study aimed to determine how delayed silo sealing at filling affects the chemical composition, fungal population, and dry matter recovery of maize silage. Whole crop maize silage was harvested and then ensiled using laboratory silos (n= 4) as 1) Control, ensiled immediately, 2) 24 hours later, and 3) 64 hours later. A 24 h aerobic exposure in fresh forage caused an increase (P<0.05) in NDF content, but 72 h aerobic exposure caused an increase (P<0.05) in dry matter and NDF content and a decrease (P<0.05) in CP content. A 72 h delay in sealing resulted in the lowest CP and the highest pH, yeast, and N-NH3 in silage. A delay in sealing caused an increase in yeast counts in silage (72 h; 3.90 vs. control; 3.05 CFU), and 72 h delayed sealing also resulted in lower (P<0.05) dry matter recovery rather than control silage (89.4% vs. 93.1% DM). Aerobic stability was adversely affected by 72 h delayed silo sealing (75.25 vs. 53.5 h). This study indicated that maize silage quality is affected by three days of delayed sealing and the fungal population and aerobic stability are affected particularly from aerobic exposure. This study indicated that maize silage quality is adversely affected by delayed sealing and aerobic exposure.

کلیدواژه‌ها [English]

  • Aerobic stability
  • Maize silage
  • Mold
  • Yeast
  • Aerobic exposure
AOAC. 2005. Official Methods of Analysis. Association of Official Analytical Chemists. Washington, DC. USA.
Ávila C. L. S. and Carvalho B. F. 2020. Silage fermentation-updates focusing on the performance of micro-organisms. Journal of Applied Microbiology, 128(4): 966-984.
 Ávila C. L. S., Bravo Martins C. E. C. and Schwan R. F. 2010. Identification and characterization of yeasts in sugarcane silages. Journal of Applied Microbiology 109(5): 1677-1686.
Barnes R. F., Miller D. F. and Nelson J. C. 1995. Forages: An Introduction to Grassland Agriculture (Vol. 1). Ames, IA, USA: Iowa State University Press.‏
Basso F. C., Bernardes T. F., Roth A. P. T. P., Lodo B. N., Berchielli T. T. and Reis R. A. 2012. Fermentation and aerobic stability of corn silage inoculated with Lactobacillus buchneri. Revista Brasileira de Zootecnia, 41: 1789-1794.
Bayatkouhsar J., Tahmasebi A. M. and Naserian A. A. 2011. The effects of microbial inoculation of corn silage on performance of lactating dairy cows. Livestock Science, 142(1): 170-174.
Bolsen K. K., Hinds M., Ilg H. and Hoover J. 1985. Effects of delayed filling and H/M inoculant on preservation and quality of corn silage. Cattlemen’s Day Conference. Kansas State University, Manhattan, KS: Agricultural Experimental Station and Cooperative Extension Service, pp: 66-70.
Bolsen K. K., Ashbell G. and Weinberg Z. G. 1996. Silage fermentation and silage additives, Review. Asian- Australasian Journal of Animal Science, 9: 483-493.
Broderick G. A. and Kung J. H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Animal Science, 63: 64-75.
Brüning D., Gerlach K., Weib K. and Südekum K. H. 2018. Effect of compaction, delayed sealing and aerobic exposure on maize silage quality and on formation of volatile organic compounds. Grass and Forage Science, 73(1): 53-66.
Carvalho B. F., Avila C. L. S., Bernardes T. F., Pereira M. N., Santos C. and Schwan R. F. 2016. Fermentation profile and identification of lactic acid bacteria and yeasts of rehydrated corn kernel silage. Journal of Applied Microbiology, 122: 589-600.
Carvalho B. F.,  Ávila C. L. S., Miguel M. G. C. P., Pinto J. C. and Santos M. C. 2015. Aerobic stability of sugar-cane silage inoculated with tropical strains of lactic acid bacteria. Grass and Forage Science, 70(2): 308-323.
D’Mello J. P. F., Placinta C. M. and Mcdonald A. M. C. 1999. Fusarium mycotoxins: a review of global implications for animal health, welfare, and productivity. Animal Feed Science and Technology, 80: 183-205.
Dolci P., Tabacco E., Cocolin L. and Borreani G. 2011. Microbial dynamics during aerobic exposure of corn silage stored under oxygen barrier or polyethylene films. Applied and Environmental Microbiology, 77(21): 7499-7507.
Fink-Gremmels J. 1999. Mycotoxins: their implications for human and animal health. The Veterinary Quarterly, 21: 115-20.
Fink-Gremmels J. 2008. The role of mycotoxins in the health and performance of dairy cows. The Veterinary Journal, 176: 84-92.
Henderson A. R. and McDonald P. 1975. The effect of delayed sealing on fermentation and losses during ensilage. Journal of the Science of Food and Agriculture, 26(5): 653-667.
Hussein H. S. and Brasel J. M. 2001. Toxicity, metabolism, and impact of mycotoxins on human and animals. Toxicology, 167.
Johansson M., Emmoth E., Salomonsson A. C. and Albihn A. 2005. Potential risks when spreading anaerobic digestion residues on grass silage crops—survival of bacteria, molds and viruses. Grass and Forage Science, 60: 175-185.
Jonsson A. 1991. Growth of Clostridium tyrobutyricum during fermentation and aerobic deterioration of grass silage. Journal of the Science of Food and Agriculture,‎ 54: 557-568.
Kleinschmit D. H. and Kung L. Jr. 2006. The effects of Lactobacillus buchneri 40788 and Pediococcus pentosaceus R1094 on the fermentation of corn silage. Journal of Dairy Science, 89: 3999-4004.
Kunkle W. E., Chambliss C. G., Adesogan A. T. and Adjei M. B. 2006. Silage harvesting, Storing and Feeding. University of Florida online. Available at: http://edis.ifas.ufl.edu/publication.html.
Mansfield M. A. and Kuldau G. A. 2007. Microbiological and molecular determination of mycobiota in fresh and ensiled maize silage. Mycologia, 99: 269-278.
McDonald P., Henderson N. and Heron S. 1991. The Biochemistry of Silage, 2th ed. Marlow, UK, Chalcombe Publications.
Mills J. A. and Kung Jr. L. 2002. The effect of delayed ensiling and application of a propionic acid-based additive on the fermentation of barley silage. Journal of Dairy Science, 85(8): 1969-1975.
Muck R. E. 1988. Factors Influencing silage quality and their implications for management. Journal of Dairy Science, 71(11): 2992-3002.
Pahlow G., Muck R. E., Driehuis F., Oude Elferink S. J. W. H. and Spoelstra S. F. 2003. Microbiology of ensiling. In D. R. Buxton, R. E. Muck, and J. H. Harrison (Eds.), Silage Science and Technology, pp. 31-93. Madison USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.
Pitt R. E. 1986. Dry matter losses due to oxygen infiltration in silos. Journal of Agricultural Engineering Research, 35(3): 193-205.
Schmale D. G. and Munkvold G. P. 2009. Mycotoxins in crops: A threat to human and domestic animal health. Plant Health Instructor, pp. 0715-721. Doi: 10.1094/PHI-I-2009.
Scudamore K. A. and Livesey C. T. 1998. Occurrence and significance of mycotoxins in forage crops and silage: A review. Journal of the Science of Food and Agriculture, 77: 1-17.
Spadaro D., Bustos-Lopez M. P., Gullino M. L., Piano S., Tabacco E. and Borreani G. 2015. Evolution of fungal populations in corn silage conserved under polyethylene or biodegradable films. Journal of Applied Microbiology, 119: 510-520.
Uriarte-Archundia M. E., Bolsen K. K. and Brent B. E. 2002. A study of the chemical and microbial changes in whole-plant corn silage during exposure to air: Effects of a biological additive and sealing technique. In Proceedings of the 13th International Silage Conference, Auchincruive, Scotland, pp. 172-173.
Van Soest P. J., Robertson J. B. and Lewis B. A. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597.
Vatandoost M., Mesgaran M. D. and Vakili A. 2011. Fermentation characteristics, in situ rumen degradation and nutritional value of whole crop barley ensiled with microbial inoculant or ammonium propionate for lactating dairy Holstein cows. Journal of Agricultural Science and Technology, A1: 1095-1102.
Vila-Donat P., Marín S.,  Sanchis V. and Ramos A. J.  2018. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food and Chemical Toxicology, 114: 246-259.
Wambacq E., Vanhoutte I., Audenaert K., De Gelder L. and Haesaert G. 2016. Occurrence, prevention and remediation of toxigenic fungi and mycotoxins in silage: a review. Journal of the Science of Food and Agriculture, 96(7): 2284-2302.
Weiss K., Kroschewski B. and Auerbach H. 2016. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. Journal of Dairy Science, 99(10): 8053-8069.
Wilkinson J. M. and Bolsen K. K. 2003. History of silage. Silage Science and Technology (Agronomy Series No. 42), American Society of Agronomy, Madison, WI.  pp. 1-30.
Wilkinson J. M. 1999. Silage and animal health. Natural Toxins, 7: 221-232.
Woolford M. K. 1990. A review: The detrimental effects of air on silage. Journal of Applied Bacteriology, 68: 101-116.