پویش کل ژنومی صفات مرتبط با وزن تخم مرغ در نژاد رُد آیلند رِد با استفاده از روش های بیزی

نوع مقاله : مقاله پژوهشی


1 دانشیار، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک

2 استادیار، گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک


تحقیق حاضر با هدف شناسایی مناطق ژنومی و ژن­های کاندیدای مرتبط با صفات وزن تخم ­مرغ، بر اساس پویش ژنومی با استفاده از تراشه پربرون­داد Affymetrix 600K chip در 1078 پرنده نسل یازدهم مرغ نژاد رُد آیلند رِد انجام شد. برای هر پرنده، هفت صفت شامل وزن تخم­ مرغ در اولین تخم­گذاری، و وزن تخم مرغ در سنین 28، 36، 56، 66، 72 و 80 هفتگی جمع­آوری شده بود. ارتباط بین هر یک از نشانگرهای چندشکل تک نوکلئوتیدی (SNP) و صفات مختلف با استفاده از روش­های بیز A و B در نرم­افزار GenSel نسخه 90/4 بررسی شد. در مجموع، نتایج این تحقیق نشان داد روش بیز A از نظر میزان واریانس ژنتیکی افزایشی توجیه شده در مقایسه با روش بیز B دارای عملکرد بهتری بود. تعداد نه نشانگر حاصل از روش بیزA  با بیشترین میزان واریانس ژنتیکی روی کروموزوم­های شماره 1، 3، 5 و 20 قرار داشتند. SNP­های شناسایی شده در نزدیکی 35 ژن قرار گرفته بودند که از این میان، ژن­های کاندیدای BPIFB2، OCX36، CPT1A، TCF15، CECR2، SIAH3، FADS1، FADS2 و SGK1 عملکردهای مهمی را در فرآیند تولید تخم ­مرغ از راه تشکیل پروتئین آلبومین، سوخت و ساز اسیدهای چرب و تشکیل پوسته تخم مرغ داشتند. نتایج تحقیق حاضر نشان می­دهد هنگامی که معماری صفات بررسی شده از مدل تعداد زیاد جایگاه ژنی پیروی کند، معمولاً روش­ بیز A بر روش بیز B برتری دارد. علاوه بر این، با توجه به شناسایی مناطق ژنومی جدید و نقش کلیدی ژن­های ذکر شده در ایجاد وزن تخم ­مرغ، می­توان کارآیی روش بیز A برای پویش ژنومی در صفات وزن تخم مرغ را تأیید کرد.



عنوان مقاله [English]

Genomic-wide association study for egg weight-related traits in Rhode Island Red breed using Bayesian methods

نویسندگان [English]

  • A. H. Khaltabadi Farahani 1
  • H. Mohammadi 2
  • M. H. Moradi 1
  • H. A. Ghasemi 1
  • I. Hajkhodadadi 1
1 Associate Professor, Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
2 Assistant Professor, Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
چکیده [English]

Introduction: The goal of genome-wide association (GWA) studies of quantitative traits is to identify genomic regions that explain a substantial proportion of the genetic variation for the trait, with the ultimate goal to identify causal mutations underlying the genetic basis of the trait. The standard GWA approach is to genotype a population that has been phenotyped for the trait(s) of interest and genotyped for many genetic markers across the genome and to analyze these data by estimating and testing the effects of marker genotypes on phenotypes using a regression-type of analysis for each single nucleotide polymorphism (SNP), one at a time. Bayesian methods such as Bayes A and Bayes B assume a heavy tail prior distribution for SNP effects and use Markov Chain Monte Carlo (MCMC) to sample from the posterior distribution. Although the objective of these methods was to predict the breeding value of selection candidates (genomic breeding values), they do that by estimating the effects of all SNPs. The estimated SNP effect, the proportion of variance explained by a SNP, or the number of times the SNP fits in the model with non–zero effect can be used as criteria to identify locations or genomic regions that affect the trait of interest. Results have shown that these Bayesian methods can effectively detect QTL in simulated and real data. Recently, a new methodology has been developed to address this limitation and allow for a better understanding of the genetic architecture of complex traits through a gene network analysis. For this purpose, to identify genomic regions and candidate genes associated with egg weight (EW), a genome-wide association study (GWAS) was performed in the present study using Affymetrix 600 K high density SNP array in 1,078 hens of 11th generation of Rhode Island Red.
Materials and methods: Data available for 1,078 pedigree-recorded hens were used to collect phenotypic EW-related data. Seven traits, including egg weight at the first laying of hens, and egg weight at 28, 36, 56, 66, 72, and 80 weeks of age were collected for each bird.  The analyses were performed using GenSel v4.73R, by fitting covariates for haplotype alleles in BayesA and BayesB models. A single Markov chain Monte Carlo (MCMC) chain of length 41,000, including burn-in of 1,000 first iterations, was computed for each analysis to obtain posterior estimates of covariate effects. These were used to obtain a direct genetic variance for animals. The primary analysis showed that correlations and regression coefficients had converged at this chain length. Annotation terms and pathway analyses were conducted using protein analysis through evolutionary relationships of PANTHER software version 10.0.
Results and discussion: The results showed that the BayesA method performed better in explaining additive genetic variance compared to BayesB method. Nine markers obtained from BayesA with the highest additive genetic variance were located on chromosomes 1, 3, 5, and 20. Genes that overlap in regions of interest were identified with the Ensembl BioMart data mining (http://www.ensembl.org/biomart/) based on the Galgal6 assembly and the Ensembl Genes 96 database. The detected SNPs were located close to 35 genes, among which, the candidate genes of BPIFB2, OCX36, CPT1A, TCF15, CECR2, SIAH3, FADS1, FADS2, and SGK1 play important functions in the egg production process through the albumen protein formation, fatty acids metabolism, and eggshell formation. It is noteworthy that the present study has detected an association in regions different from that reported by previous studies. This can be because of flock particularities, such as the extent of linkage disequilibrium, allelic frequencies, and statistical approaches.
Conclusions: The results of the present study showed that when the genetic architecture of studied traits follows infinitesimal model assumptions, the BayesA method usually performs better than BayesB. Moreover, considering the identification of new genome regions and the key role of the mentioned genes on the development of egg weight, the efficiency of the BayesA method can be confirmed for GWAS in egg weight traits.

کلیدواژه‌ها [English]

  • Genome-wide association
  • Bayesian method
  • Candidate gene
  • Egg weight
Abasht B. and Lamont S. J. 2007. Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F2 population. Animal Genetics, 38: 491-498.
Atefi A., Shadparvar A. A. and Ghavi Hossein-Zadeh N. 2021. Accuracy of genomic evaluation considering the interaction effect between estimation method of marker effects, population structure, and genetic architecture of the trait. Animal Production Research, 10(2): 1-10. (In Persian).
Azizpour N., Khaltabadi Farahani A. H., Moradi M. H. and Mohammadi H. 2020. Genome-wide association study based on gene-set enrichment analysis associated with milk yield in Holstein cattle. Journal of Animal Science Researches, 30(1): 79-91. (In Persian).
Bain M. M., Nys Y. and Dunn I. C. 2016. Increasing persistency in lay and stabilising egg quality in longer laying cycles. What are the challenges? British Poultry Science, 57: 330-338.
Browning B. L. and Browning S. R. 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. American Journal of Human Genetics, 84: 210-223.
Colombani C., Legarra A., Fritz S., Guillaume F., Croiseau P., Ducrocq V. and Robert-Granié C. 2012. Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCp methods for genomic selection in French Holstein and Montbéliarde breeds. Journal of Dairy Science, 96: 575-591.
Coster A., Bastiaansen J. W., Calus M. P., van Arendonk J. A. and Bovenhuis H. 2010. Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance. Genetics Selection Evolution, 42.
Daetwyler H. D., Schenkel F. S., Sargolzaei M. and Robinson J. A. 2008. A genome scan to detect quantitative trait loci for economically important traits in Holstein cattle using two methods and a dense single nucleotide polymorphism map. Journal of Dairy Science, 91: 3225-3236.
Daetwyler H. D., Pong-Wong R., Villanueva B. and Woolliams J. A. 2010. The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185: 1021-1031.
De los Campos G., Hickey J. M., Pong-Wong R., Daetwyler H. D. and Calus M. P. 2013. Whole genome regression and prediction methods applied to plant and animal breeding. Genetics, 193: 327-345.
Fernando R. and Garrick D. 2009. GenSel-User Manual. Mapping genes for complex traits in domestic animals and their use in breeding programmes, 3rd Edition. Version 2.
Guérin-Dubiard C., Pasco M., Mollé D., Désert C., Croguennec T. and Nau F. 2006. Proteomic analysis of hen egg weight. Journal of Agricultural and Food Chemistry, 54: 3901-3910.
Hay E. H. and Roberts A. 2018. Genome-wide association study for carcass traits in a composite beef cattle Breed. Livestock Science, 213: 35-43.
Habier D., Fernando R. L., Kizilkaya K. and Garrick D. J. 2011. Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics, 12: 1.
Khan S., Wu S. B. and Roberts J. 2019. RNA-sequencing analysis of shell gland shows differences in gene expression profile at two time-points of eggshell formation in laying chickens. BMC Genomics, 20: 89.
Khang N. T., Jennen D. G., Tholen E. and Tesfaye D. 2007. Association of the FADS2 gene with omega-6 and omega-3 PUFA concentration in the egg yolk of Japanese quail. Animal Biotechnolgy, 18: 189-201.
Khaltabadi Farahani A. M., Mohammadi H. Moradi M. H. and Ghasemi H. A. 2020a. Identification of potential genomic regions for egg weight by a haplotype-based genome-wide association study using Bayesian methods. British Poultry Science, 26: 1-7.
Khaltabadi Farahani A. M., Mohammadi H. and Moradi M. 2020b. Genome-wide association study using fix-length haplotypes and network analysis revealed new candidate genes for nematode resistance and body weight in Blackface lambs. Annals of Animal Science, 20: 445-464. 
Lin R. and Yin G. 2015. Bayes factor and posterior probability: Complementary statistical evidence  to  pvalue. Contemporary Clinical Trials, 44: 33-35.
Liu Z., Sun C., Yan Y., Li G., Wu G. and Liu A. 2018. Genome-wide association analysis of age-dependent egg weights in chickens. Frontiers in Genetics, 3: 9.
Mann K. 2007. The chicken egg white proteome. Proteomics, 7: 3558-3568.
Matsui S. and Takahashi H. 2017. Is egg flavour changeable by chicken breeding? Association of chicken fatty acid desaturase 1 gene single-nucleotide polymorphisms with egg fatty acid profiles and flavour in a Japanese hybrid chicken. Cogent Food and Agriculture, 3: 1287812.
Meuwissen T., Hayes B. and Goddard M. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157: 1819-1829. 
Meuwissen T., Solberg T. R., Shepherd R. and Woolliams J. A. 2009. A fast algorithm for BayesB type of prediction of genome-wide estimates of genetic value. Genetics Selection Evolution, 41: 50-63.
Mohammadi H., Rafat S. A., Moradi Shahrbabak H., Shodja J. and Moradi M. H. 2020. Genome-wide association study and gene ontology for growth and wool characteristics in Zandi sheep. Journal of Livestock Science and Technologies, 8(2): 45-55.
Nangsuay A., Ruangpanit Y., Meijerhof R. and Attamangkune S. 2011. Yolk absorption and embryo development of small and large eggs originating from young and old breeder hens. Poultry Science, 90: 2648-2655.
Peters S., Kizilkaya K., Garrick D., Fernando R., Reecy J., Weaber R., Silver G. and Thomas M. 2012. Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. Journal of Animal Science 90: 3398-3409.
Rikimaru K., Egawa Y., Yamaguchi S. and Takahashi H. 2016. Association of chicken fatty acid desaturase 1 and 2 gene single nucleotide polymorphisms with the fatty acid composition of thigh meat in Japanese Hinai-dori crossbred chickens. Journal of Fisheries and Livestock Production, 4: 202.
Qiu F., Xie L., Ma J. E., Luo W., Zhang L., Chao Z., Chen S., Nie Q., Lin Z. and Zhang X. 2017. Lower expression of SLC27A1 enhances intramuscular fat deposition in chicken via down-regulated fatty acid oxidation mediated by CPT1A. Frontiers in Physiology, 29: 449.
Sallam A. M., Zare Y., Alpay F., Shook G. E., Collins M. T., Alsheikh S., Sharaby M. and Kirkpatrick B. W. 2017. An across-breed genome wide association analysis of susceptibility to paratuberculosis in dairy cattle. Journal of Dairy Research, 1: 61-67.
Solberg T. R., Sonesson A. K., Woolliams J. A. and Meuwissen T. H. E. 2008. Genomic selection using different marker types and densities. Journal of Animal Science, 86: 2447-2454.
Waide E. H., Tuggle C. K., Serão N. V., Schroyen M., Hess A., Rowland R. R., Lunney J. K., Plastow G. and Dekkers J. C. 2017. Genomewide association of piglet responses to infection with one of two porcine reproductive and respiratory syndrome virus isolates. Journal of Animal Science, 1: 16-38.
Wolc A., Arango J., Settar P., Fulton J.  E., O’Sullivan N. P. and Dekkers J. C. M. 2018. Genome wide association study for heat stress induced mortality in a white egg layer line. Poultry Science, 98: 92-96.
Wolc A., Arango J., Settar P., Fulton J. E., O’sullivan N. P. and Preisinger R. 2012. Genome‐wide association analysis and genetic architecture of egg weight and egg uniformity in layer chickens. Animal Genetics, 43: 87-96.
Xue Q., Zhang G., Li T., Ling J., Zhang X. and Wang J. 2017. Transcriptomic profile of leg muscle during early growth in chicken. PLoS One, 3: e0173824.
Yin Z., Lian L., Zhu F., Zhang Z. H., Hincke M., Yang N. and Hou Z. C. 2019. The transcriptome landscapes of ovary and three oviduct segments during chicken (Gallus gallus) egg formation. Genomics, 18: 30581-30590.
Yuan J., Sun C., Dou T., Yi G., Qu L., Qu L., Wang K. and Yang N. 2015. Identification of promising mutants associated with egg production traits revealed by genome-wide association study. PLoS One, 10: e0140615.
Zhu S. K., Tian Y. D., Zhang S., Chen Q. X., Wang Q. Y., Han R. L. and Kang X. T. 2014. Adjacent SNPs in the transcriptional regulatory region of the FADS2 gene associated with fatty acid and growth traits in chickens. Genetics and Molecular Research, 2: 3329-3336.