اثر زمان و مقدار تزریق ویتامین AD3E در اواخر آبستنی بر کیفیت آغوز، غلظت فراسنجه‌های پلاسما و وضعیت آنتی‌اکسیدانی میش‌های افشاری و بره‌های آنها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد، گروه علوم دامی، دانشکده کشاورزی، دانشگاه ایلام

2 دانشیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه ایلام

3 استادیار، گروه علوم دامی، دانشکده کشاورزی، دانشگاه ایلام

4 استادیار، بخش تحقیقات علوم دامی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

به­منظور مطالعه اثر تزریق ویتامین AD3E بر کیفیت آغوز میش‌های افشاری و جذب ایمیونوگلوبولین در بره‌های آنها از 40 رأس میش بالغ افشاری با میانگین وزن بدن 45 کیلوگرم استفاده شد. تیمارهای آزمایشی شامل 1- میش‌های تیمار شاهد (بدون تزریق ویتامین‌های AD3E)، 2- میش‌های دریافت­کننده 10 میلی‌لیتر محلول تزریقی حاوی AD3E در چهار هفته قبل از زایش، 3- میش‌های دریافت­کننده 10 میلی‌لیتر محلول تزریقی حاوی AD3E در دو هفته قبل از زایش و 4- میش‌های دریافت­کننده پنج میلی‌لیتر محلول تزریقی حاوی AD3E در چهار و دو هفته قبل از زایش بودند. بیشترین غلظت گلوکز و مالون‌دی‌آلدئید در یک هفته قبل از زایش در پلاسمای میش‌های گروه شاهد مشاهده شد (05/0>P). تزریق ویتامین AD3E در مقایسه با عدم تزریق آن باعث افزایش پروتئین کل و شاخص بریکس پلاسمای میش‌ها در یک هفته قبل از زایش و در بره‌های آنها شد (05/0>P). کمترین شاخص بریکس در آغوز میش‌های گروه شاهد مشاهده شد (05/0>P). درصد پروتئین آغوز میش‌های گروه شاهد در مقایسه با دیگر گروه‌ها تمایل به کاهش داشت (08/0=P). تزریق 10 میلی‌لیتر محلول ویتامین AD3E در دو هفته قبل از زایش باعث افزایش فعالیت گلوتاتیون پراکسیداز، سوپراکسید دسموتاز و ظرفیت آنتی‌اکسیدانی کل در پلاسمای میش‌ها در یک هفته قبل از زایش و بره‌های آنها شد (05/0>P). به­‌طور کلی، تزریق 10 میلی‌لیتر ویتامین AD3E در دو هفته قبل از زایش باعث افزایش غلظت پروتئین کل و ظرفیت آنتی‌اکسیدانی پلاسمای میش‌ها، افزایش درصد پروتئین آغوز و به دنبال آن، افزایش غلظت پروتئین کل و ظرفیت آنتی‌اکسیدانی پلاسمای بره‌های آنها شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of time and amount of vitamin AD3E injection in late pregnancy on colostrum quality, concentration of plasma parameters, and antioxidant status of Afshari ewes and their lambs

نویسندگان [English]

  • F. Shahbazi 1
  • F. Fatahnia 2
  • M. Shamsollahi 3
  • H. Jafari 4
  • Y. Mohammadi 2
1 Former MSc Student, Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
2 Associate Professor, Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
3 Assistant Professor, Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
4 Assistant Professor, Department of Animal Science Research, Ilam Agricultural and Natural Resources Research and Education Center, AREEO, Iran
چکیده [English]

Introduction: Birth weight is the most important factor affecting lamb survival, but even when birth weight is appropriate, some lambs are lost to weaning. Infectious diseases are the most important factors affecting the mortality of lambs before weaning. Therefore, any factor that reduces the prevalence of these infections has a positive effect on the survival of lambs and improves the reproductive performance of the flock. The structure of the placenta in ruminant animals prevents the transfer of immunoglobulins from maternal circulation to the fetus. Therefore, newborn ruminants are completely dependent on the absorption of immunoglobulins from the mother's colostrum after birth. Consuming a sufficient amount of high-quality colostrum at the right time is the most important management factor affecting the survival and health of newborn ruminants. Colostrum also affects the survival of lambs by providing nutrients necessary for metabolism and heat production. Fat-soluble vitamins (A, D3, and E) are among the important components of colostrum and their concentrations are higher in colostrum compared to milk. These vitamins play an important role in improving the immune system of ruminant animals. Many genetic and non-genetic factors such as animal breed, mother's age, nutrition of dam in late pregnancy, herd vaccination program, colostrum volume, and colostrum collection time after parturition affect the quantity and quality of colostrum in ruminant animals. Nutrition status in late pregnancy is the most important factor affecting the quantity and quality of colostrum produced in these animals. Therefore, an insufficient supply of vitamins in pregnant ewes is one of the reasons for reducing the survival and mortality of newborn lambs. Much research has been conducted regarding the effect of dietary or injectable vitamin A, D3, and E supplements in late pregnancy on the maternal immune system and the survival of newborn ruminants, although, they have mainly focused on vitamin E and selenium supplements. To our knowledge, there is no information on how the timing of the use of these vitamins in late pregnancy affects the metabolic responses of ruminants. Therefore, this experiment aimed to investigate the effect of time and amount of vitamin AD3E injection in late pregnancy on colostrum quality and plasma metabolites of Afshari ewes and their lambs.
Materials and methods: Forty Afshari mature ewes with an average of 45 kg and 2-3 years of age were used. One month before the expected lambing, animals were divided into four groups and randomly assigned to experimental treatments. Experimental treatments were: 1. No injection of vitamin AD3E (Control; C), 2. Injection of 10 mL of vitamin AD3E four weeks before the expected lambing, 3. Injection of 10 mL of vitamin AD3E two weeks before the expected lambing, and 4. Injection of five mL of vitamin AD3E four weeks and five mL two weeks before the expected lambing. Blood samples of ewes and lambs were collected four and one week before the expected lambing and three days after colostrum consumption, respectively. Plasma was separated and stored at -20 C for metabolites’ measurement. Samples of colostrum from all animals were collected and stored at 3-5 C for determining chemical composition and BRIX index.
Results and discussion: Results showed that the greatest plasma concentrations of glucose and malondialdehyde (MDA) on day 7 before lambing were observed in ewes of the C groups (P<0.05). Experimental treatments did not affect plasma total cholesterol (TCh), triglyceride (TG), and magnesium (Mg) concentrations of ewes on day 7 before lambing (P>0.05). Plasma concentration of total protein (TP), calcium (Ca), and BRIX index on day 7 before lambing were higher in ewes who received vitamin AD3E compared to the C group (P<0.05). Ewes received 10 mL of vitamin AD3E two weeks before the expected lambing had the highest plasma glutathione peroxidase (GPX), superoxide dismutase (SOD), and total antioxidant activities on day 7 before lambing (P<0.05). Colostrum fat and lactose percentage were not influenced by experimental treatments (P>0.05). Whereas, colostrum protein percentage tended to be lower for ewes in the C group (P=0.08). The lowest colostrum BRIX index was observed in the ewes of the C group (P<0.05). The lowest plasma glucose concentration was observed in lambs born from ewes of the C group (P<0.05). Experimental treatments did not affect plasma TCh, TG, Ca, and Mg concentrations of lambs (P>0.05). Lambs born from ewes received 10 mL of vitamin AD3E two weeks before lambing had the highest plasma GPX, SOD, and total antioxidant activities compared to other groups (P<0.05). Vitamin AD3E injection increased the plasma BRIX index of lambs compared to the group without injection (P<0.05).
Conclusions: The results showed that injection of vitamin AD3E two weeks before lambing increased plasma TP concentration and antioxidant activity of ewes, as well as colostrum TP content, and consequently increased plasma TP concentration and antioxidant activity of lambs. Therefore, this can be an effective strategy to improve lamb survival and performance.

کلیدواژه‌ها [English]

  • Lamb
  • Colostrum composition
  • Blood metabolite
  • Afshari ewe
  • Vitamin AD3E
Abd Eldaim, M. A. A., Gaafar, K. M., Darwish, R. A., Mahboub, D., & Helal, M. A. (2015). Prepartum vitamin A supplementation enhances goat doe health status and kid viability and performance. Small Ruminant Research, 129, 6-10. doi: 10.1016/j.smallrumres.2015.06.007
Abdelhamid, A. M., El-Ayouty S. A., & Arief H. S. (1992). Effect of feed intake and dietary vitamin A levels on sheep performance. Arch Tierernahr, 42, 325-335. doi: 10.1080/17450399209428546
Amanlou, H., Karimi, A., Mahjoubi, E., & Milis, C. (2011). Effects of supplementation with digestible undegradable protein in late pregnancy on ewe colostrum production and lamb output to weaning. Journal of Animal Physiology and Animal Nutrition, 95, 616-622. doi: 10.1111/j.1439-0396.2010.01092.x
Ameri, M., & Wilkerson, M. J. (2008). Comparison of two commercial radial immunodiffusion assays for detection of bovine immunoglobulin G in newborn calves. Journal of Veterinary Diagnosis and Investigation, 20, 333-336. doi: 10.1177/104063870802000312
AOAC. (2007). Official Methods of Analysis. Association of Official Analytical Chemists (18th Ed.) Gaithersburg, MD. USA.
Araripe Sucupira, M. C., Nascimento, P. M., Lima, A. S., de Oliveira, S., Gomes, M., Melville, P., Della Libera, A. M., Rodrigues, P. H. M., & Susin, I. (2019). Parenteral use of ADE vitamins in prepartum and its influences in the metabolic, oxidative, and immunological profiles of sheep during the transition period. Small Ruminant Research, 170, 120-124. doi: 10.1016/j.smallrumres.2018.11.020
Banchero, G. E., Milton, J. T. B., Lindsay, D. R., Martin, G. B., & Quintans, G. (2015). Colostrum production in ewes: a review of regulation mechanisms and of energy supply. Animal, 9, 831-837. doi: 10.1017/S1751731114003243
Baumrucker, C. R., & Bruckmaier, R. M. (2014). Colostrogenesis: IgG1 transcytosis mechanisms. Journal of Mammary Gland Biology and Neoplasia, 19, 103-117. doi: 10.1007/s10911-013-9313-5
Blomhoff, R., & Blomhoff, H. K. (2006). Overview of retinoid metabolism and function. Journal of Neurobiology, 66, 606-630. doi: 10.1002/neu.20242
Bourne, N., Wathes, D. C., Lawrence, K. E., McGowan, M., & Laven, R. A. (2008). The effect of parenteral supplementation of vitamin E with selenium on the health and productivity of dairy cattle in the UK. Veterinary Journal, 177, 381-387. doi: 10.1016/j.tvjl.2007.06.006
Bouwstra, R. J., Goselink, R. M. A., Dobbelaar, P., Nielen, M., Newbold, J. R., & Van Werven, T. (2008). The relationship between oxidative damage and vitamin E concentration in blood, milk, and liver tissue from vitamin E supplemented and non-supplemented periparturient heifers. Journal of Dairy Science, 91, 977-987. doi: 10.3168/jds.2007-0596
Brozos, C., Mavrogianni, V. S., & Fthenakis, G. C. (2011). Treatment and control of Peri-parturient metabolic diseases: Pregnancy toxemia, hypocalcemia, hypomagnesemia. Veterinary Clinics Food Animal, 27, 105-113. doi: 10.1016/j.cvfa.2010.10.004
Calamari, L., Petrera, F., & Bertin, G. (2010). Effects of either sodium selenite or Se yeast (Sc CNCM I-3060) supplementation on selenium status and milk characteristics in dairy cows. Livestock Science, 128, 154-165. doi: 10.1016/j.livsci.2009.12.005
Catharine Ross, A., Chen, Q., & Ma, Y. (2011). Vitamin A and retinoic acid in the regulation of B-cell development and antibody production. Vitamins and Hormones, 86, 103-126. doi: 10.1016/B978-0-12-386960-9.00005-8
Celi, P. (2010). The role of oxidative stress in small ruminants’ health and production. Revista Brasileira de Zootecnia, 39, 348-363. doi: 10.1590/S1516-35982010001300038
Deelen, S. M., Ollivett, T. L., Haines, D. M., & Leslie, K. E. (2014). Evaluation of a Brix refractometer to estimate serum immunoglobulin G concentration in neonatal dairy calves. Journal of Dairy Science, 97, 3838-3844. doi: 10.3168/jds.2014-7939
Draeger, C. L., Naves, A., Marques, N., Baptistella, A. B., Carnauba, R. A., Paschoal, V., Nicastro, H. (2014). Controversies of antioxidant vitamins supplementation inexercise: ergogenic or ergolytic effects in humans. Journal of the International Society of Sports Nutrition, 11, 1-4. doi: 10.1186/1550-2783-11-4
Dunlap, K. A., Brown, J. D., Keith, A. B., & Satterfield, M. C. (2015). Factors controlling nutrient availability to the developing fetus in ruminants. Journal of Animal Science and Biotechnology, 6, 16-26. doi: 10.1186/s40104-015-0012-5
El Hadi, H., Vettor, R., & Rossato, M. (2018). Vitamin E as a treatment for nonalcoholic fatty liver disease: Reality or myth? Antioxidants, 7, 12-25. doi: 10.3390/antiox7010012
Fischer, A. J., Song, Y., He, Z., Haines, D. M., Guan, L. L., & Steele, M. A. (2018). Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. Journal of Dairy Science, 101, 3099-3109. doi: 10.3168/jds.2017-13397
Flinn, T., Kleemann, D. O., Swinbourne, A. M., Kelly, J. M., Weaver, A. C., Walker, S. K., Gatford, K. L., Kind, K. L., & van Wettere, W. H. E. J. (2020). Neonatal lamb mortality: major risk factors and the potential ameliorative role of melatonin. Journal of Animal Science and Biotechnology, 11, 107-117. doi: 10.1186/s40104-020-00510-w
Foroughi, M., Maghsoudi, Z., & Askari, Gh. (2016). The effect of vitamin D supplementation on blood sugar and different indices of insulin resistance in patients with non‑alcoholic fatty liver disease (NAFLD). Iranian Journal of Nursing and Midwifery Research, 21, 100-105. doi: 10.4103/1735-9066.174759
Freund, C., & Gotthardt, D. N. (2017). Vitamin A deficiency in chronic cholestatic liver disease: Is vitamin A therapy beneficial? Liver International, 37, 1752-1758. doi: 10.1111/liv.13433
Godden, S. (2008). Colostrum management for dairy calves. Veterinary Clinics of North America: Food Animal Practice, 24, 19-39. doi: 10.1016/j.cvfa.2007.10.005
Godden, S. M., Lombard, J. E., & Woolums, A. R. (2019). Colostrum management for dairy calves. Veterinary Clinics of North America: Food Animal Practice, 35, 535-556. doi: 10.1016/j.cvfa.2019.07.005
Goff, J. P. (2015). Disorders of Carbohydrate and Fat Metabolism. Dukes’ Physiology of Domestic Animals, Thirteenth Edition. Edited by William O. Reece, Howard H. Erickson, Jesse P. Goff and Etsuro E. Uemura. Published 2015 by John Wiley & Sons, Inc. 541-550.
Goff, J. P. (2018). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101, 2763-2813. doi: 10.3168/jds.2017-13112
Goff, J. P., & Stabel, J. R. (1990). Decreased plasma retinol, α-tocopherol, and zinc concentration during the periparturient period. Effect of milk fever. Journal of Dairy Science, 7311, 3195-3199. doi: 10.3168/jds.S0022-0302(90)79010-8
Habeeb, A. A. M., El-Gohary, E. S. H., Saleh, H. M., & Aboelnaga, A. I. (2008). Effect of summer heat stress conditions and feeding protein level on blood components in Ossimi ewes and their suckling lambs. Egyptian Journal of Applied Science, 23, 388-408.
Hatfield, P. G., Daniels, J. T., Kott, R.W., Burgess, D. E., & Evans, T. J. (2000). Role of supplemental vitamin E in lamb survival and production: a review. Journal of Animal Science, 77, 1-9. doi: 10.2527/jas2000.77E-Suppl1a
Hinch, G. N., & Brien, F. (2014). Lamb survival in Australian flocks: a review. Animal Production Science, 54, 656-666. doi: 10.1071/AN13236
Hinde, D., & Woodhouse, M. (2019). Ewe nutrition and colostrum. Livestock, 24, 9-14. doi: 10.12968/live.2019.24.Sup2.9
Holmøy, I. H., Waage, S., Granquist, E. G., Labée-Lund, T. M., Ersdal, C., Hektoen, L., & Sørby, R. (2017). Early neonatal lamb mortality: postmortem findings. Animal, 11, 295-305. doi: 10.1017/S175173111600152X
Ji, X., Liu, N., Wang, Y., Ding, K., Huang, Sh., & Zhang, C. (2023). Pregnancy toxemia in ewes: A review of molecular metabolic mechanisms and management strategies. Metabolites, 13, 149-163. doi: 10.3390/metabo13020149
Katoch, B., Sebastian, S., Sahdev, S., Padh, H., Hasnain, S. E., & Begum, R. (2002). Programmed cell death and its clinical implication. Indian Journal of Experimental Biology, 406, 513-524.
Kessler, E. C., Bruckmaier, R. M., & Gross, J. J. (2020). Short communication: Comparative estimation of colostrum quality by Brix refractometry in bovine, caprine, and ovine colostrum. Journal of Dairy Science, 104, 2438-2444. doi: 10.3168/jds.2020-19020
Khatti, A., Mehrotra, S., Patel, P. K., Singh, G., Maurya, V. P., Mahla, A. S., Chaudhari, R. K., Narayanan, K., Das, G. K., Singh, M., Sarkar, M., & Gupta, H. K. (2017). Supplementation of vitamin E, selenium and increased energy allowance mitigates transition stress and improves postpartum reproductive performance in crossbred cow. Theriogenology, 104, 142-148. doi: 10.1016/j.theriogenology.2017.08.014
Khorsandi, S., Riasi, A., Khorvash, M., Mahyari, S. A., Mohammadpanah, F., & Ahmadi, F. (2016). Lactation and reproductive performance of high producing dairy cows given sustained-release multi-trace element/vitamin ruminal bolus under heat stress condition. Livestock Science, 187, 146-150. doi: 10.1016/j.livsci.2016.03.008
Lacetera, N., Bernabuci, U., Ronchi, B., & Nardone, A. (1996). Effects of selenium and vitamin E administration during a late stage of pregnancy on colostrum and milk production in dairy cows, and on passive immunity and growth of their offspring. American Journal of Veterinary Research, 57, 1776-1780.
Lang, P. O., Samaras, N., Samaras, D., & Aspinall, R. (2013). How important is Vitamin D in preventing infections. Osteoporosis International, 24, 1537-1553. doi: 10.1007/s00198-012-2204-6
Lapillonne, A. (2010). Vitamin D deficiency during pregnancy may impair maternal and fetal outcomes. Medical Hypotheses. 74, 71-75. doi: 10.1016/j.mehy.2009.07.054
Likittrakulwong, W., Poolprasert, P., Hanthongkul, W., & Roytrakul, S. (2022). Effects of intramuscular injections of vitamins AD3E and C in combination on fertility, immunity, and proteomic and transcriptomic analyses of dairy cows during early gestation. BioTech, 11, 20-35. doi: 10.3390/biotech11020020
Liu, S., Masters, D., Ferguson, M., & Thompson, A. (2014). Vitamin E status and reproduction in sheep: potential implications for Australian sheep production. Animal Production Science, 54, 694-714. doi: 10.1071/AN13243
Liu, Z. L., Yang, D. P., Chen, P., Dong W. X., & Wang, D. M. (2008). Supplementation with selenium and vitamin E improves milk fat depression and fatty acid composition in dairy cows fed fat diet. Asian-Australasian Journal of Animal Sciences, 21, 838-844. doi: 10.5713/ajas.2008.70618
Lopez, A. J., Steele, M. A., Nagorske, M., Sargent, R., & Renaud, D. L. (2020). Hot topic: Accuracy of refractometry as an indirect method to measure failed transfer of passive immunity in dairy calves fed colostrum replacer and maternal colostrum. Journal of Dairy Science, 104, 2032-2039. doi: 10.3168/jds.2020-18947
Lucas, R. M., Ponsonby, A. L., Pasco, J. A., & Morley, R. (2008). Future health implications of prenatal and early-life vitamin D status. Nutrition Reviews, 66, 710-720. doi: 10.1111/j.1753-4887.2008.00126.x
Mader, T. L., Holt, S. M., Halen, G. L., Davis, M. S., & Spiers, D. E. (2002). Feeding strategies for managing heat load in feedlot cattle. Journal of Animal Science, 80, 2373-2382. doi: 10.2527/2002.8092373x
Majid, M. S. (2009). Mastitis in Dairy Animals (1st ed.). Azad University, Garmsar Branch. [In Persian]
Margerison, J., & Downey, N. (2005). Guidelines for optimal dairy heifer rearing and herd performance P. C. Garnsworthy, ed. Nottingham University Press, London, UK.
McFadden, J. W. (2020). Review: Lipid biology in the periparturient dairy cow: contemporary perspectives. Animal, 14, s165-s175. doi: 10.1017/S1751731119003185
McGrath, B. A., Fox, P. F., McSweeney, P. L. H., & Kelly, A. L. (2016). Composition and properties of bovine colostrum: a review. Dairy Science and Technology, 96, 133-158. doi: 10.1007/s13594-015-0258-x
Mercier, Y., Gatellier, P., & Renerre, M. (2004). Lipid and protein oxidation in vitro, and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. Meat Science, 66, 467-473. doi: 10.1016/S0309-1740(03)00135-9
Mirzaei, E., Jafari, H., & Varmaghani, S. (2003). The survey of supplementary nutrition (different energy levels) effect on lambing rate of Kurdish sheep in Ilam province. Final Report of Research Plan. Aniaml Science Research Institute, Iran. [In Persian]
Mohebbi, A., Nematollahi, A., Ebrahimi Dorcheh, E., & Goodarzian Asad, F. (2012). Influence of dietary garlic (Allium sativum) on the antioxidative status of rainbow trout (Oncorhynchus mykiss). Aquaculture Research, 43, 1184-1193. doi: 10.1111/j.1365-2109.2011.02922.x
Mora, J. R., Iwata, M., & Von Andrian, U. H. (2008). Vitamin effects on the immune system: vitamins A and D take center stage. Nature Reviews Immunology, 8, 685- 698. doi: 10.1038/nri2378
Mutinati, M., Piccinno, M., Roncetti, M., Campanile, D., Rizzo, A., & Sciorsci, R. (2013). Oxidative stress during pregnancy in the sheep. Reproduction in Domestic Animals, 48, 353-357. doi: 10.1111/rda.12141
National Research Council (NRC). 2001. Nutrient Requirements of Dairy Cattle (7th ed.). National Academy Press, Washington, DC.
National Research Council (NRC). 2021. Nutrient Requirements of Dairy Cattle (8th Ed.). National Academy of Science, Washington, DC.
Oldham, C. M., Thompson, A. N., Ferguson, M. B., Gordon, D. J., Kearney, G. A., & Paganoni, B. L. (2011). The birthweight and survival of Merino lambs can be predicted from the profile of live weight change of their mothers during pregnancy. Animal Production Science, 51, 776-783. doi: 10.1071/AN10155
Paganoni, B. L., Ferguson, M. B., Kearney, G. A., & Thompson, A. N. (2014). Increasing weight gain during pregnancy results in similar increases in lamb birthweights and weaning weights in Merino and non-Merino ewes regardless of sire type. Animal Production Science, 54, 727-735. doi: 10.1071/AN13263
Pop, T. L., Sîrbe, C., Benta, G., Mititelu, A., & Grama, A. (2022). The role of vitamin D and vitamin D binding protein in chronic liver diseases. International Journal of Molecular Science, 23, 10705. doi: 10.3390/ijms231810705
Pottier, J., Focant, M., Debier, C., De Buysser, G., Goffe, C., Mignolet, E., Froidmont, E., & Larondelle, Y. (2006). Effect of dietary vitamin E on rumen biohydrogenation pathways and milk fat depression in dairy cows fed high-fat diets. Journal of Dairy Science, 89, 685-692. doi: 10.3168/jds.S0022-0302(06)72131-2
Puppel, K., Gołebiewski, M., Grodkowski, G., Slósarz, J., Kunowska-Slósarz, M., Solarczyk, P., Łukasiewicz, M., Balcerak, M., & Przysucha, T. (2019). Composition and factors affecting quality of bovine colostrum: A Review. Animals, 9, 1070. doi: 10.3390/ani9121070
Reece, W. O. (2015). The Composition and Functions of Blood. Dukes’ Physiology of Domestic Animals, Thirteenth Edition. Edited by William O. Reece, Howard H. Erickson, Jesse P. Goff and Etsuro E. Uemura. John Wiley & Sons, Inc. Pp. 114-136.
Rooke, J. A., Matheson, S., Ison, S., Jack, M., Ashworth, C. J., & Dwyer, C. M. (2009). The effect of late pregnancy supplementation of ewes with vitamin E on lamb vigour. Animal, 3, 1555-1561. doi: 10.1017/S1751731109990425
Salam, A. A., Vijchulata, P., Sivarajasingam, S., & Ragavan, K. (1987). Haematologic andgrowth response to prepartum administration of vitamin A in calves. Growth, 51, 198-201.
Sales, F., Peralta, O. A., Narbona, E., McCoard, S., Lira, R., De Los Reyes, M., González-Bulnes, A., and Parraguez, V. H. (2019). Maternal supplementation with antioxidant vitamins in sheep results in increased transfer to the fetus & improvement of fetal antioxidant status and development. Antioxidants, 59, doi: 10.3390/antiox8030059.
Sammin, D., Markey, B., Bassett, H., & Buxton, D. (2009). The ovine placenta and placentitis - a review. Veterinary Microbiology, 135, 90-97. doi: 10.1016/j.vetmic.2008.09.054
Santiago, M. R., Fagundes, G. B., Nascimento, D. M., Faustino, L. R., da Silva, C. M. G., Dias, F. E. F., de Souza, A. P., Arrivabene, M., & Cavalcante, T. V. (2020). Use of digital Brix refractometer to estimate total protein levels in Santa Ines ewes’ colostrum and in lambs’ blood serum. Small Ruminant Research, 182, 78-80. doi: 10.1016/j.smallrumres.2019.10.014
Santos, N. W., Yoshimura, E. H., Machado, E., Matumoto-Pintro, P. T., Montanher, P. F., Visentainer, J. V., Dos Santos, G. T., & Zeoula, L. M. (2016). Antioxidant effects of a propolis extract and vitamin E in blood and milk of dairy cows fed diet containing flaxseed oil. Livestock Science, 191, 132-138. doi: 10.1016/j.livsci.2016.07.012
SAS Institute. (2014). Statistical Analysis System. SAS Institute Inc., Cary, NC, USA.
Shokrzadeh, M., Shobi, S., Attar, H., hayegan, S., Payam, S. S., & Ghorbani, F. (2012). Effect of vitamins A, E and C on liver enzyme activity in rats exposed to organophosphate pesticide diazinon. Pakistan Journal of Biological Sciences, 15, 936-941. doi: 10.3923/pjbs.2012.936.941
Somagond, Y. M., Alhussien, M. N., & Dang, A. K. (2023). Repeated injection of multivitamins and multiminerals during the transition period enhances immune response by suppressing inflammation and oxidative stress in cows and their calves. Frontiers in Immunology, 14, 1059956. doi: 10.3389/fimmu.2023.1059956
Sordillo, L. M. (2017). Symposium review: Oxylipids and the regulation of bovine mammary inflammatory responses. Journal of Dairy Science, 101, 5629-5641. doi: 10.3168/jds.2017-13855
Sordillo, L. M. (2016). Nutritional strategies to optimize dairy cattle immunity. Journal of Dairy Science, 99, 4967-4982. doi: 10.3168/jds.2015-10354
Spears, J. W., & Weiss, W.  P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176, 70-76. doi: 10.1016/j.tvjl.2007.12.015
Stephensen, C. B. (2001). Vitamin A, infection, and immune function. Annual Review of Nutrition, 21, 167-192. doi: 10.1146/annurev.nutr.21.1.167
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3593-3597. doi: 10.3168/jds.S0022-0302(91)78551-2
Wagner, B. A., Buettner, G. R., & Burns, C. P. (1996). Vitamin E slows the rate of free radical-mediated lipid peroxidation in cells. Archives of Biochemistry and Biophysics, 334, 261-267. doi: 10.1006/abbi.1996.0454
Xiao, X., & Song, B. L. (2013). SREBP: a novel therapeutic target. Acta Biochimica et Biophysica Sinica, 45, 2-10. doi: 10.1093/abbs/gms112